Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (4): 400-408    DOI: 10.3724/SP.J.1037.2013.00538
Current Issue | Archive | Adv Search |
EFFECT OF Nb ON TRANSFORMATION AND MICROSTRUCTURE REFINEMENT IN MEDIUM CARBON STEEL
WU Si, LI Xiucheng, ZHANG Juan, SHANG Chengjia()
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

WU Si, LI Xiucheng, ZHANG Juan, SHANG Chengjia. EFFECT OF Nb ON TRANSFORMATION AND MICROSTRUCTURE REFINEMENT IN MEDIUM CARBON STEEL. Acta Metall Sin, 2014, 50(4): 400-408.

Download:  HTML  PDF(7717KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Medium carbon steel is widely used in structural steels because of its favorable strength, but lack of toughness is a limitation in industrial applications. Among the different strengthening mechanism, grain refinement is the only method to improve both strength and toughness simultaneously. The toughness of steels can be affected by micro-alloying elements and microstructures, for medium carbon wheel steel, the fracture toughness is proportional to the square root of ferrite fraction and inversely proportional to the cube root of prior austenitic grain size. In this work, Nb micro-alloying is used to improve mechanical properties of medium carbon steel. Microstructures and mechanical properties of Nb-bearing medium carbon steel were studied in contrast with traditional Nb-free steel. The continuous cooling transformation (CCT) curves of investigated steels were drawn by adopting dilatometry and metallographic method. The typical microstructures were observed by OM and SEM with EDS. The morphologies of precipitates were obtained by TEM. The effects of cooling rates on microstructure and hardness of the steel were studied with the above experimental methods. The results showed that the typical microstructure of medium carbon steel was ferrite and pearlite and the volume fraction of ferrite was increased from 4% to 24% by adding 0.06%Nb with refined microstructure. The yield strength of Nb-bearing steel was improved from 385 to 455 MPa and the Charpy V-notch energy at -20 ℃ was increased from 7 to 19 J in the condition of almost no reduction in tensile strength. It is because of Nb addition, which makes the transformation products of medium carbon steel be composed of ferrite and pearlite in a wider region of cooling rates (≤10 ℃/s) and a broader temperature range (530~690 ℃), with the hardness lower than 300 HV. With the calculation of Thermal-Calc software and solid solubility formula, Nb exists in medium carbon steel in the form of precipitate. The result of observation by TEM indicates the size of Nb precipitates was distributed in 20~50 nm. To sum up, the grain refining and precipitation strengthening are the main mechanism of Nb to promote the ferrite-pearlite transformation and improve toughness in medium carbon steel.

Key words:  medium carbon steel      Nb micro-alloying      microstructure refining      CCT curve      precipitate     
Received:  30 August 2013     
ZTFLH:  TG113  
Fund: Supported by National Basic Research Program of China (No.2010CB630801)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00538     OR     https://www.ams.org.cn/EN/Y2014/V50/I4/400

Steel C Si Mn S P Cr Nb Fe
A 0.47 0.42 0.78 0.0082 0.015 0.22 - Bal.
B 0.47 0.42 0.81 0.0089 0.013 0.24 0.06 Bal.
Table 1  Chemical compositions of medium carbon steel
Fig.1  

连续冷却转变工艺示意图

Fig.2  

实验钢奥氏体晶粒及正火态金相组织形貌

Fig.3  

A钢在不同冷速下的OM像

Steel Yield strength
MPa
Tensile strength
MPa
Elongation
%
Reduction of area
%
Impact energy (-20 ℃)
J
A 385 748 22.8 55.3 7
B 455 733 22.3 53.8 19
表2  实验钢的力学性能
Fig.4  

B钢在不同冷速下的OM像

Fig.5  

实验钢的CCT曲线

Fig.6  

实验钢在不同冷速下的硬度

Fig.7  

B钢中铁素体相内析出物的SEM像及能谱

Fig.8  

B钢中析出物的TEM像及能谱

Fig.9  

析出相的体积分数随温度的变化

[1] Zerbst U, Mädler K, Hintze H. Eng Fract Mech, 2005; 72: 163
[2] Ekberg A, Kabo E. Wear, 2005; 258: 1288
[3] Cui Y H, Zhang J P, Su H, Jiang B. Res Iron Steel, 2005; 114: 53
(崔银会, 张建平, 苏 航, 江 波. 钢铁研究, 2005; 114: 53)
[4] Miao C L, Shang C J, Zhang G D, Subramanian S V. Mater Sci Eng, 2010; A527: 4985
[5] Gong W M, Yang C F, Zhang Y Q. J Iron Steel Res, 2006; 18(10): 49
(龚维幂, 杨才福, 张永权. 钢铁研究学报, 2006; 18(10): 49)
[6] Hansen S S, Krauss G, Banerji S K. Proc Int Conf on Welding Metallurgy of Structural Steels, Warrendale, PA: TMS-AIME, 1987: 155
[7] Pickering F B, Garbarz B. Mater Sci Technol, 1989; 5: 227
[8] Sakamoto H, Toyama K, Hirakawa K. Mater Sci Eng, 2000; A285: 288
[9] Wu S, Li X C, Shang C J, Han J S, Wang Q D. Trans Mater Heat Treat, 2012; 33(7): 100
(吴 斯, 李秀程, 尚成嘉, 韩建生, 王群娣. 材料热处理学报, 2012; 33(7): 100)
[10] Lan Y J, Li D Z, Li Y Y. Acta Mater, 2004; 56: 1721
[11] Li X C, Xia D X, Wang X L, Wang X M, Shang C J. Sci China Technol Sci, 2013; 56(1): 66
[12] Fu J Y. Iron Steel, 2005; 40(8): 1
(付俊岩. 钢铁, 2005; 40(8): 1)
[13] Tither G. Proceeding of the International Symposium Niobium 2001, Orlando: Niobium 2001 Limited, 2001: 1
[14] GB/T 6394-2002. Metal-Methods for Estimating the Average Grain Size. Beijing: Standardization Administration of the People's Republic of China, 2002
(国标GB/T 6394-2002. 金属平均晶粒度测定法. 6394-2002. 金属平均晶粒度测定法. 北京: 国家标准化管理委员会, 2002)
[15] Yong Q L. Secondary Phases in Steel. Beijing: Metallurgical Industry Press, 2006: 145
(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 145)
[16] Narita K. Kobe Steel Eng Rep, 1966; 16: 179
[17] Zheng L, Yong Q L, Sun Z B. Acta Metall Sin, 1987; 23: 547
(郑 鲁, 雍岐龙, 孙珍宝. 金属学报, 1987; 23: 547)
[18] Chi H X, Ma D S, Liu J H, Chen Z Z, Yong Q L. Acta Metall Sin, 2010; 46: 206
(迟宏宵, 马党参, 刘建华, 陈再枝, 雍岐龙. 金属学报, 2010; 46: 206)
[19] Gladman T. Proc Roy Soc, 1966; 294: 298
[20] Gladman T. HSLA Steels. Warrendale, PA: TMS-AIME, 1992: 3
[21] Gladman T. Mater Sci Technol, 1999; 15(1): 30
[22] Lee K J, Kang K B, Lee J K, Kwon O, Chang R W. Proceedings of the International Conference in Mathematical Modelling of Hot Rolling of Steel, Hamilton, Canada: AIME, 1990: 435
[23] Mecozzi M G, Sietsma J, Zwaag S. Acta Mater, 2006; 54: 1431
[24] Gladman T. Recrystallization and Grain Growth of Multi-phase and Particle Containing Materials. Oskilde, Denmark: Riso National Laboratory, 1980: 183
[25] Kop T A, Sietsma J, Zwaag S. Mater Sci Technol, 2001; 36: 1569
[26] Wagner V, Starke P, Kerscher E, Eifler D. Int J Fatigue, 2011; 33: 69
[27] Ahlström J, Karlsson B. Wear, 1999; 232: 1
[28] Aglan H A, Liu Z Y, Hassan M F, Fateh M. J Mater Process Technol, 2004; 151: 268
[29] Shang C J, Wu S, Li X C, He F, Wang X M. Chin Pat, 201210065521.6, 2012
(尚成嘉, 吴 斯, 李秀程, 贺 飞, 王学敏. 中国专利, 201210065521.6, 2012)
[1] LU Yuhua, WANG Haizhou, LI Dongling, FU Rui, LI Fulin, SHI Hui. A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope[J]. 金属学报, 2023, 59(7): 841-854.
[2] RUI Xiang, LI Yanfen, ZHANG Jiarong, WANG Qitao, YAN Wei, SHAN Yiyin. Microstructure and Mechanical Properties of a Novel Designed 9Cr-ODS Steel Synergically Strengthened by Nano Precipitates[J]. 金属学报, 2023, 59(12): 1590-1602.
[3] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[4] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[5] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[6] LIU Xuxi, LIU Wenbo, LI Boyan, HE Xinfu, YANG Zhaoxi, YUN Di. Calculation of Critical Nucleus Size and Minimum Energy Path of Cu-Riched Precipitates During Radiation in Fe-Cu Alloy Using String Method[J]. 金属学报, 2022, 58(7): 943-955.
[7] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[8] GAO Yihan, LIU Gang, SUN Jun. Recent Progress in High-Temperature Resistant Aluminum-Based Alloys: Microstructural Design and Precipitation Strategy[J]. 金属学报, 2021, 57(2): 129-149.
[9] GUO Qianying, LI Yanmo, CHEN Bin, DING Ran, YU Liming, LIU Yongchang. Effect of High-Temperature Ageing on Microstructure and Creep Properties of S31042 Heat-Resistant Steel[J]. 金属学报, 2021, 57(1): 82-94.
[10] LIU Feng, WANG Tianle. Precipitation Modeling via the Synergy of Thermodynamics and Kinetics[J]. 金属学报, 2021, 57(1): 55-70.
[11] HAN Baoshuai, WEI Lijun, XU Yanjin, MA Xiaoguang, LIU Yafei, HOU Hongliang. Effect of Pre-Deformation on Microstructure and Mechanical Properties of Ultra-High Strength Al-Zn-Mg-Cu Alloy After Ageing Treatment[J]. 金属学报, 2020, 56(7): 1007-1014.
[12] LIANG Mengchao, CHEN Liang, ZHAO Guoqun. Effects of Artificial Ageing on Mechanical Properties and Precipitation of 2A12 Al Sheet[J]. 金属学报, 2020, 56(5): 736-744.
[13] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[14] HUI Yajun, LIU Kun, WU Kemin, LI Qiuhan, NIU Tao, WU Qiaoling. Effect of Coiling Temperature on Microstructure and Mechanical Properties of 500 MPa Grade Hot Stamping Axle Housing Steel[J]. 金属学报, 2020, 56(12): 1605-1616.
[15] Zhengyan ZHANG,Feng CHAI,Xiaobing LUO,Gang CHEN,Caifu YANG,Hang SU. The Strengthening Mechanism of Cu Bearing High Strength Steel As-Quenched and Tempered and Cu Precipitation Behavior in Steel[J]. 金属学报, 2019, 55(6): 783-791.
No Suggested Reading articles found!