Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (10): 1177-1184    DOI: 10.3724/SP.J.1037.2013.00219
Current Issue | Archive | Adv Search |
INVESTIGATIONS ON FORMATION MECHANISMS OF BRAZING CRACKS AT THE AUSTENITIC STAINLESS STEEL/FILLER METAL BRAZING JOINT INTERFACES
ZHANG Qingke, PEI Yinyin, LONG Weimin
State Key Laboratory of Advanced Brazing Filler Metals and Technology, Zhengzhou Research Institute of Mechanical Engineering, Zhengzhou 450001
Cite this article: 

ZHANG Qingke, PEI Yinyin, LONG Weimin. INVESTIGATIONS ON FORMATION MECHANISMS OF BRAZING CRACKS AT THE AUSTENITIC STAINLESS STEEL/FILLER METAL BRAZING JOINT INTERFACES. Acta Metall Sin, 2013, 49(10): 1177-1184.

Download:  PDF(2513KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The austenitic stainless steels are widely used as structural materials of the workpieces served in severe environments, while the interfacial cracking in brazing joints of the austenitic stainless steels is a drawback limiting their application. Thus far the reports have not comprehensively revealed the formation mechanisms of the brazing cracks. To help solving this problem, formation mechanisms of the interfacial cracks at the 316LN stainless steel/filler metal brazing joints were comprehensively investigated in this study. The 316LN cooling pipes were firstly arc brazed with Cu-Si and Ag-Cu-Sn filler metals. According to the leakage test results of these pipes, microstructures of the brazing joints and the interfacial cracks were observed by OM and SEM, and compositions around the cracks were analyzed by EDS. The results show that the interfacial cracks initiate at the 316LN/filler metals interface and propagate along the grain boundaries of the stainless steel, elements of the filler metals were detected in the cracks, and it is confirmed that the cracks formed before solidification of the filler metals. To further reveal the crack formation mechanisms, verification tests including dipping (1100℃, 30 s) and vacuum-brazing (1100℃, 10 min) of 316LN with Cu-Si filler metal, arc brazing of 316LN with Ag-Al, Ag-Sn and Ni filler metals were conducted. The cracking was not observed at the vacuum-brazed 316LN/Cu-Si joint interface and the arc-brazed 316LN/Ni interface, but the other three brazing joints show similar cracking behaviors with the 316LN/Cu-Si joint. Base on the results, it was predicated that weakening of the grain boundaries in the 316LN induced by GB diffusion of the low melting point elements, and the brazing stress result from the temperature gradient in the 316LN substrate material during the brazing process are necessary formation conditions of the brazing cracks. Cracking at the brazing joint interface are affected by composition of filler metals, heating rate, thermal input, and heat treatment conditions of substrate materials. Brazing techniques were optimized according to the findings, and it was found that occurrence of the cracks can be restrained through decreasing the temperature gradient or avoid to used the low melting point elements-contained filler metals.

Key words:  argon arc brazing      Cu-contained filler metal      austenitic stainless steel      brazing crack     
Received:  25 April 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00219     OR     https://www.ams.org.cn/EN/Y2013/V49/I10/1177

[1] Han E H.  Acta Metall Sin, 2011; 47: 769

(韩恩厚. 金属学报, 2011; 47: 769)
[2] Han E H, Wang J Q, Wu X Q, Ke W.  Acta Metall Sin, 2010; 46: 1379
(韩恩厚, 王俭秋, 吴欣强, 柯伟. 金属学报, 2010; 46: 1379)
[3] Sanyasi R, Ali Y A-K.  Weld J, 2010; 89(2): 46
[4] Shankar V, Gill T P S, Mannan S L, Sundaresan S.  Sci Technol Weld Join, 2000; 5(2): 91
[5] Shankar V, Gill T P S, Mannan S L, Sundaresan S.  Sadhana, 2003; 28: 359
[6] Shankar V, Gill T P S, Mannan S L, Terrance A L E, Sundaresan S.  Metall Mater Trans, 2000;31A: 3109
[7] Shankar V, Gill T P S, Mannan S L, Sundaresan S.  Mater Sci Eng, 2003; A343: 170
[8] Shinoda T,~Miyake H, Matsuzaka T, Matsumoto T,~Kanai H.  Mater Sci Technol, 1992; 8: 913
[9] Zhang L T, Wang J Q.  Acta Metall Sin, 2013; 49: 911
(张利涛, 王俭秋. 金属学报, 2013; 49: 911)
[10] Lin S B, Song J L, Yang C L, Ma G C.  Acta Metall Sin, 2009; 45: 1211
(林三宝, 宋建岭, 杨春利, 马广超. 金属学报, 2009; 45: 1211)
[11] Qin G L, Su Y H, Wang S J.  Acta Metall Sin, 2012; 48: 1018
(秦国梁, 苏玉虎, 王术军. 金属学报, 2012; 48: 1018)
[12] Jiang W C, Gong J M, Chen H, Tu S D.  Acta Metall Sin, 2008; 44: 105
(蒋文春, 巩建鸣, 陈虎, 涂善东. 金属学报, 2008; 44: 105)
[13] Savage W F, Nippes E F.  Weld J, 1978; 57(5): 145
[14] Ji J, Jing X G, Zhang W Y.  Trans China Weld Inst, 2004; 25(3): 124
(季杰, 井绪贵, 张文钺. 焊接学报, 2004; 25(3): 124)
[15] Lee H W, Sung J H.  Sci Technol Weld Join, 2005; 10(2): 145
[16] Holbert Jr R K, Dobbins A G, Bennett Jr R K.  Weld J, 1987; 66(8): 38
[17] Radhakrishnan V M.  Sci Technol Weld Join, 2000; 5(1): 40
[18] Li L, Messler Jr R W.  Weld J, 1999; 78(12): 387
[19] Nelson T W, Lippold J C, Lin W, Baeslack W A III.  Weld J, 1997; 76(5): 110
[20] Zacharia T.  Weld J, 1995; 74(1): 164
[21] Neidel A, Riesenbeck S.  J Fail Anal Preven, 2011; 11: 473
[22] Ogawa T, Tsunetomi E.  Weld Res Sup, 1982; 3: 82
[23] Srinivasan G, Divya M, Albert S K, Bhaduri A K, Klenk A, Achar D R G.Weld World, 2010; 54(11-12): R322
[24] Berecz T, Majlinger K, Orbulov I N, Szabo P J.  Mater Sci Forum, 2013; 729: 442
[25] Atabaki M M, Wati J N, Idris J.  Weld J, 2013; 92(3): 57
[26] Liu W, Tian Y, Zhang X.  Weld J, 1994; 73(9): 297
[1] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[2] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[3] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[4] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[5] CAO Chao, JIANG Chengyang, LU Jintao, CHEN Minghui, GENG Shujiang, WANG Fuhui. Corrosion Behavior of Austenitic Stainless Steel with Different Cr Contents in 700oC Coal Ash/High Sulfur Flue-Gas Environment[J]. 金属学报, 2022, 58(1): 67-74.
[6] PAN Qingsong, CUI Fang, TAO Nairong, LU Lei. Strain-Controlled Fatigue Behavior of Nanotwin- Strengthened 304 Austenitic Stainless Steel[J]. 金属学报, 2022, 58(1): 45-53.
[7] LI Suo, CHEN Weiqi, HU Long, DENG Dean. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. 金属学报, 2021, 57(12): 1653-1666.
[8] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[9] ZHANG Le,WANG Wei,M. Babar Shahzad,SHAN Yiyin,YANG Ke. Fabrication and Properties of Novel Multi-LayeredMetal Composites[J]. 金属学报, 2020, 56(3): 351-360.
[10] Jian PENG,Yi GAO,Qiao DAI,Ying WANG,Kaishang LI. Fatigue and Cycle Plastic Behavior of 316L Austenitic Stainless Steel Under Asymmetric Load[J]. 金属学报, 2019, 55(6): 773-782.
[11] Fengming QIN, Yajie LI, Xiaodong ZHAO, Wenwu HE, Huiqin CHEN. Effect of Nitrogen Content on Precipitation Behavior and Mechanical Properties of Mn18Cr18NAustenitic Stainless Steel[J]. 金属学报, 2018, 54(1): 55-64.
[12] Sihan CHEN,Tian LIANG,Long ZHANG,Yingche MA,Zhengjun LIU,Kui LIU. Study on Evolution Mechanism of bcc Phase During Solution Treatment in 6%Si High Silicon Austenitic Stainless Steel[J]. 金属学报, 2017, 53(4): 397-405.
[13] Jintao SHI,Longgang HOU,Jinrong ZUO,Lin LU,Hua CUI,Jishan ZHANG. QUANTITATIVE ANALYSIS OF THE MARTENSITE TRANSFORMATION AND MICROSTRUCTURE CHARACTERIZATION DURING CRYOGENIC ROLLING OF A 304 AUSTENITIC STAINLESS STEEL[J]. 金属学报, 2016, 52(8): 945-955.
[14] Yawei PENG,Jianming GONG,Dongsong RONG,Yong JIANG,Minghui FU,Guo YU. NUMERICAL ANALYSIS OF LOW-TEMPERATURE SURFACE CARBURIZATION FOR 316L AUSTENITIC STAINLESS STEEL[J]. 金属学报, 2015, 51(12): 1500-1506.
[15] Dongsong RONG,Yong JIANG,Jianming GONG. EXPERIMENTAL RESEARCH AND THERMODYNAMIC SIMULATION OF LOW TEMPERATURE COLOSSAL CARBURIZATION OF AUSTENITIC STAINLESS STEEL[J]. 金属学报, 2015, 51(12): 1516-1522.
No Suggested Reading articles found!