Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (9): 1075-1080    DOI: 10.3724/SP.J.1037.2013.00178
Current Issue | Archive | Adv Search |
OPTIMIZING CONTROL OF PRECIPITATES IN T91 FERRITIC HEAT-RESISTAN STEEL
ZHANG Ruihui1), ZHANG Chi1), XIA Zhixin2), YANG Zhigang1)
1) Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering,Tsinghua University, Beijing 100084
2) Suzhou Nuclear Power Research Institute, Suzhou 215004
Cite this article: 

ZHANG Ruihui, ZHANG Chi, XIA Zhixin, YANG Zhigang. OPTIMIZING CONTROL OF PRECIPITATES IN T91 FERRITIC HEAT-RESISTAN STEEL. Acta Metall Sin, 2013, 49(9): 1075-1080.

Download:  PDF(2084KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

T91 steel is one representative of (9%-12%)Cr (mass fraction) ferritic heat-resistant steel, in which MX carbonitrides and M23C6 carbides are two major strengthened precipitates for long-term creep under high temperature. This work attempted to control the precipitation of MX carbonitrides and M23C6 carbides by applying new heat treatment procedures. With the assist of Thermal-Calc software calculation, two new heat treatment procedures have been designed for T91 steel based on its traditional normalized-tempered treatment, in which an isothermal treatment at 850℃ was introduced between normalized treatment and tempered treatment. The mean size of M23C6 carbides decreased from 350 nm to 250 nm and the number density of MX carbonitrides increased due to the new heat treatment procedures. The calculated results of Thermal-Calc software showed that the nucleation rate of M23C6 carbides at 750℃ increased with the decrease of carbon content in the matrix, which might be the major reason why the mean size of M23C6 carbides decreased.

Key words:  T91 steel      precipitate      M23C6      nucleation rate     
Received:  09 April 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00178     OR     https://www.ams.org.cn/EN/Y2013/V49/I9/1075

[1] Sklenicka V, Kucha rv a K, Svoboda M, Kloc L,Bursik J, Kroupa A.  Mater Charact, 2003; 51: 35

[2] Ha V H, Jung W S.  Mater Sci Eng, 2012; A558: 103
[3] Wang Y, Mayer K H, Scholz A, Berger C, Chilukuru H, Durst K, Blum W.Mater Sci Eng, 2009; A511: 180
[4] Prat O, Garcia J, Rojas D, Carrasco C, Kaysser-Pyzalla A R.  Mater Sci Eng,2010; A527: 5976
[5] Knezevic V, Balun J, Sauthoff G, Inden G, Schneider A. Mater Sci Eng, 2008; A477: 334
[6] Tsuchida Y, Okamoto K, Tokunaga Y.  ISIJ Int, 1995; 35: 309
[7] Klueh R L, Hashimoto N, Maziasz P J.  J Nucl Mater, 2007; 367-370: 48
[8] Tamura M, Kumagai T, Sakai K, Shinozuka K, Esaka H.  J Nucl Mater, 2011; 417: 29
[9] Abe F, Taneike M, Sawada K.  Int J Pressure Vessels Piping, 2007; 84(1-2): 3
[10] Abe F, Horiuchi T, Taneike M, Sawada K.  Mater Sci Eng, 2004; A378: 299
[11] Gutierrez N Z, Cicco H D, Marrero J, Danon C A, Luppo M I. Mater Sci Eng, 2011; A528: 4019
[12] Masuyama F.  ISIJ Int, 2001; 41: 612
[13] Hollner S, Fournier B, Le Pendu J, Cozzika T, Tournie I,Brachet J C, Pineau A.  J Nucl Mater, 2010; 405: 101
[14] Taneike M, Abe F, Sawada K.  Nature, 2003; 424: 294
[15] Cipolla L, Danielsen H K, Venditti D, Nunzio P E D, Hald J, Somers M A J. Acta Mater, 2010; 58: 669
[16] Sawada K, Kushima H, Tabuchi M, Kimura K.  Mater Sci Eng, 2011; A528: 5511
[17] Zhu F X, Liu C, Wang P, Gao D F, Gao C, Zhu C Q, Ni G Z.  Steel Pipe, 1999; 28(1): 8
(朱伏先, 刘川, 王平, 高德福, 高潮, 祝春清, 倪国政. 钢管, 1999; 28(1): 8)
[18] Pan J S, Tong J M, Tian M B.  Fundamentals of Materials Science. Beijing:Tsinghua University Press, 2009: 526
(潘金生, 仝健民, 田民波. 材料科学基础. 北京: 清华大学出版社, 2009: 526)
[19] Foley D C, Hartwig K T, Maloy S A, Hosemann P, Zhang X.  J Nucl Mater, 2009; 389: 221
[20] Sivaprasad P V, Mannan S L, Prasad Y V R K.  Mater Sci Technol, 2004; 20: 1545
[21] Tamura M, Sakasegawa H, Kohyama A, Esaka H, Shinozuka K.  J Nucl Mater, 2003; 321: 288
[22] Yamada K, Igarashi M, Muneki S, Abe F.  ISIJ Int, 2002; 42: 779
[23] Schneider A, Inden G.  Acta Mater, 2005; 53: 519
[24] Tsukada Y, Shiraki A, Murata Y, Takaya S, Koyama T, Morinaga M.  J Nucl Mater, 2010;401: 154
[25] Rojas D, Garcia J, Prat O, Carrasco C, Sauthoff G, Kaysser-Pyzalla A R.Mater Sci Eng, 2010; A527: 3864
[26] Yong Q L.  The Second Phase in Iron and Steels. Beijing: Metallurgical Industry Press, 2006: 284
 (雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 284)
[27] Prat O, Garcia J, Rojas D, Carrasco C, Inden G.  Acta Mater, 2010; 58: 6142
[1] LU Yuhua, WANG Haizhou, LI Dongling, FU Rui, LI Fulin, SHI Hui. A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope[J]. 金属学报, 2023, 59(7): 841-854.
[2] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[3] RUI Xiang, LI Yanfen, ZHANG Jiarong, WANG Qitao, YAN Wei, SHAN Yiyin. Microstructure and Mechanical Properties of a Novel Designed 9Cr-ODS Steel Synergically Strengthened by Nano Precipitates[J]. 金属学报, 2023, 59(12): 1590-1602.
[4] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[5] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[6] LIU Xuxi, LIU Wenbo, LI Boyan, HE Xinfu, YANG Zhaoxi, YUN Di. Calculation of Critical Nucleus Size and Minimum Energy Path of Cu-Riched Precipitates During Radiation in Fe-Cu Alloy Using String Method[J]. 金属学报, 2022, 58(7): 943-955.
[7] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[8] GAO Yihan, LIU Gang, SUN Jun. Recent Progress in High-Temperature Resistant Aluminum-Based Alloys: Microstructural Design and Precipitation Strategy[J]. 金属学报, 2021, 57(2): 129-149.
[9] GUO Qianying, LI Yanmo, CHEN Bin, DING Ran, YU Liming, LIU Yongchang. Effect of High-Temperature Ageing on Microstructure and Creep Properties of S31042 Heat-Resistant Steel[J]. 金属学报, 2021, 57(1): 82-94.
[10] LIU Feng, WANG Tianle. Precipitation Modeling via the Synergy of Thermodynamics and Kinetics[J]. 金属学报, 2021, 57(1): 55-70.
[11] HAN Baoshuai, WEI Lijun, XU Yanjin, MA Xiaoguang, LIU Yafei, HOU Hongliang. Effect of Pre-Deformation on Microstructure and Mechanical Properties of Ultra-High Strength Al-Zn-Mg-Cu Alloy After Ageing Treatment[J]. 金属学报, 2020, 56(7): 1007-1014.
[12] LIANG Mengchao, CHEN Liang, ZHAO Guoqun. Effects of Artificial Ageing on Mechanical Properties and Precipitation of 2A12 Al Sheet[J]. 金属学报, 2020, 56(5): 736-744.
[13] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[14] HUI Yajun, LIU Kun, WU Kemin, LI Qiuhan, NIU Tao, WU Qiaoling. Effect of Coiling Temperature on Microstructure and Mechanical Properties of 500 MPa Grade Hot Stamping Axle Housing Steel[J]. 金属学报, 2020, 56(12): 1605-1616.
[15] Zhengyan ZHANG,Feng CHAI,Xiaobing LUO,Gang CHEN,Caifu YANG,Hang SU. The Strengthening Mechanism of Cu Bearing High Strength Steel As-Quenched and Tempered and Cu Precipitation Behavior in Steel[J]. 金属学报, 2019, 55(6): 783-791.
No Suggested Reading articles found!