Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (2): 153-158    DOI: 10.3724/SP.J.1037.2012.00466
Current Issue | Archive | Adv Search |
TEM CHARACTERIZATION OF DISPERSOIDS AND MICROSTRUCTURE OF ODS-316 AUSTENITIC STEEL
WANG Man 1), ZHOU Zhangjian 1), YAN Zhigang2), YU Pengfei2), SUN Hongying1)
1) School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2) State Key Laboratory for Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004
Cite this article: 

WANG Man, ZHOU Zhangjian, YAN Zhigang, YU Pengfei, SUN Hongying. TEM CHARACTERIZATION OF DISPERSOIDS AND MICROSTRUCTURE OF ODS-316 AUSTENITIC STEEL. Acta Metall Sin, 2013, 49(2): 153-158.

Download:  PDF(3375KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Super-critical water-cooled reactor (SCWR) has been selected to be one of the most potential advanced nuclear reactors due to its simplification and high efficiency. Oxide dispersion strengthened (ODS) austenitic steels are promising candidate materials for SCWR, which combine the advantages of both austenitic stainless steels and ODS steels. In this work, ODS-316 austenitic steel (316L+0.35%Y2O3+0.3%Ti, mass fraction) was fabricated by the process of mechanical alloying (MA) and hot isostatic pressing (HIP). The microstructural evolution after milling and hipping were studied by XRD. Morphologies and electron diffraction patterns of dispersed particles were characterized by TEM. Tensile properties of ODS austenitic steel were measured at room temperature. It was found that there were two phases of α (FeCr) and γ (Fe, Ni) in the powders after mechanical alloying, which was resulted from strain induced transformation. ODS-316 austenitic steel was single austenitic phase, since the strain disappeared during the consolidation of HIP. According to the observation and characterization of TEM, three kinds of dispersoids were found in samples: cubic Y2Ti2O7 and TiN and orthorhombic Y2TiO5. However, most of the dispersoids were round particles that enriched in Y, Ti and O. The tensile strength of ODS-316 austenitic steel was improved significantly, and its UTS reached 726 MPa. 

Key words:  mechanical alloying      ODS austenitic steel      dispersed particle     
Received:  04 August 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00466     OR     https://www.ams.org.cn/EN/Y2013/V49/I2/153

[1] Yao H. China Nucl Ind, 2008; 4: 24


(姚焕. 中国核工业, 2008; 4: 24)

[2] Murty K L, Charit I. J Nucl Mater, 2008; 383: 189

[3] Karak S K, Chudoba T, Witczak Z, Lojkowski W, Manna I. Mater Sci Eng, 2011; A7475: 7483

[4] Was G S, Ampornrat P, Gupta G, Teysseyre S, West E A, Allen T R, Sridharan K, Tan L, Chen Y, Ren X, Pister C. J Nucl Mater, 2007; 176: 201

[5] Klimiankou M, Lindau R, Moslang A. J Nucl Mater, 2007; 367: 173

[6] Kasada R, Toda N, Yutani K, Cho H S, Kishimoto H, Kimura A. J Nucl Mater, 2007; 367: 222

[7] Klueh R L. Int Mater Rev, 2005; 50: 287

[8] Klueh R L, Shingledecker J P, Swindeman R W, Hoelzer D T. J Nucl Mater, 2005; 341: 103

[9] Ukai S, Fujiwara M. J Nucl Mater, 2002; 307: 749

[10] Alinger M J, Odette G R. J Nucl Mater, 2004; 329: 382

[11] Oka H, Watanabe M, Kinoshita H, Shibayama T, Hashimoto N, Ohnuki S, Yamashita S, Ohtsuka S. J Nucl Mater, 2011; 147: 279

[12] Ortega Y, Monge M A, de Castro V, Munoz A, Leguey T, Pareja R. J Nucl Mater, 2009; 386: 462

[13] Li M, Zhou Z J, Liao L, Xu Y L, Ge C C. Mater Rev, 2012; 24: 94

(李明, 周张健, 廖璐, 许迎利, 葛昌纯. 材料导报, 2012; 24: 94)

[14] Yang P, Fu Y Y, Cui F E, Sun Z Q. Acta Metall Sin, 2001; 37: 592

(杨平, 傅云义, 崔凤娥, 孙祖庆. 金属学报, 2001; 37: 592)

[15] Miller M K, Kenik E A, Russell K F, Heatherly L, Hoelzer D T, Maziasz P J. Mater Sci Eng, 2003; A353: 140

[16] Miller M K, Hoelzer D T, Kenik E A, Russell K F. J Nucl Mater, 2004; 329: 338

[17] Miller M K, Russell K F, Hoelzer D T. J Nucl Mater, 2006; 351: 261

[18] Sakasegawa H, Chaffron L, Legendre F, Boulanger L, Cozzika T, Brocq M, Carlan Y. J Nucl Mater, 2009; 384: 115

[19] Sakasegawa H, Legendre F, Boulanger L, Brocq M, Chaffron L, Cozzika T, Malaplate J, Henry J. J Nucl Mater, 2011; 417: 229

[20] Klimiankou M, Lindau R, Moslang A. J Nucl Mater, 2004; 329: 347

[21] Phaniraj M P, Kim D I, Shim J H, Cho Y W. Acta Mater, 2009; 57: 1856

[22] Kim T K, Bae C S, Kim D H, Jang J S, Kim S H, Lee C B, Hahn D. Nucl Eng Technol, 2008; 40: 305

[23] Barin I, Knacke O. Thermochemical Properties of Inorganic Substances. Berlin, Heidebrg,New York: Springer-Verlag, 1973: 749

[24] Zhang S T. Handbook of Iron and Steel. Beijing: China Standard Press, 2001: 74

(张少棠主编. 钢铁材料手册. 北京: 中国标准出版社, 2001: 74)

[25] Wang M, Zhou Z J, Sun H Y, Hu H L, Li S F. Mater Sci Eng, 2013; A287: 292

 

 
[1] Min ZHU, Zhongchen LU, Renzong HU, Liuzhang OUYANG. DIELECTRIC BARRIER DISCHARGE PLASMA ASSISTED BALL MILLING TECHNOLOGY AND ITS APPLICATIONS IN MATERIALS FABRICATION[J]. 金属学报, 2016, 52(10): 1239-1248.
[2] HU Na, XUE Lihong, GU Jian, LI Heping, YAN Youwei. OPTIMIZATION OF GRADING ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Al13Fe4/Al COM- POSITES IN SITU SYNTHESIZED BY MECHANICAL ALLOYING AND SPARK PLASMA SINTERING[J]. 金属学报, 2015, 51(2): 216-222.
[3] GU Jian, GU Sasa, XUE Lihong, WU Shusen, YAN Youwei. MICROSTRUCTURE EVOLUTION OF Al-Fe ALLOYS PREPARED BY MECHANICAL ALLOYING AND SPARK PLASMA SINTERING[J]. 金属学报, 2013, 29(4): 435-442.
[4] LU Zheng, LU Chenyang, ZHANG Shouhui, XIE Rui, Liu Chunming. PREPARATION AND CHARACTERIZATION OF NANO-STRUCTURED 14Cr-ODS FERRITIC STEEL[J]. 金属学报, 2012, 48(6): 649-653.
[5] ZHANG Laichang; SHEN Zhiqi; XU Jian. The Role of Sn Substitution for Si And B to Enhance the Amorphization of Mechanically-Milled Ti50Ni22Cu18Al4Si4B2 Alloy[J]. 金属学报, 2004, 40(9): 981-986 .
[6] ZHANG Xiaoqiang; XU Jian. Formation of W Particles /La55Al25Cu10Ni5Co5 Glassy Alloy Matrix Composites By Mechanical Milling[J]. 金属学报, 2004, 40(6): 647-.
[7] HANG Laichang; SHEN Zhiqi; XU Jian. MECHANICALLY--DRIVEN AMORPHIZATION IN A (Ti, Zr, Hf)--(Cu, Ni, Ag)--Al MULTICOMPONENT ALLOY SYSTEM[J]. 金属学报, 2004, 40(4): 421-428 .
[8] REN Shan; HONG Lan; ZHANG Jinxiu (Department of Physics; Zhongshan University; Guangzhou 510275)LU Manqi; HU Zhuangqi (State Key Lab of RSA; Institute of Metal Research; Shenyang 110015). HYDROGEN INDUCING AMORPHIZATION OF Ti-Fe SYSTEM IN MECHANICAL ALLOYING[J]. 金属学报, 1998, 34(4): 373-377.
[9] TIAN Yun;PAN Qingchun;LIU Guangzu;SHAN Bingquan;YANG Fenglan (Central Iron and Steel Research Institute; Beijing 100081). EFFECTS OF Ti ON STRENGTHENING OF ODS FERRITIC ALLOY FOR ADVANCED FBR CLADDING APPLICATION[J]. 金属学报, 1998, 34(11): 1217-1222.
[10] YANG Junyou; WU Jiansheng; ZENG Zhenpeng(The Open Laboratory of Education Ministry for High Temperature Materials and High Temperature Tests;Shanghai Jiaotong University; Shanghai 200030)Correspondent: YANG Junyou; postdoctoral research;Tel: (021)62812440;E-mail: jggang@ mail.sjtu.edu.cn. INVESTIGATION ON THE DEFORMATION AND ENERGY TRANSFER OF POWDERS DURING MECHANICAL ALLOVING[J]. 金属学报, 1998, 34(10): 1061-1067.
[11] LI Bolin;ZHU Min; LI Long; LUO Kanchang;LI Zuxin (South China University of Technology; Guangzhou 510641)(Manuscript received 1996-03-19; in revised form 1996-07-15). HARDENNING AND SOFTENNING EFFECTS OF Fe-Cu NANOCRYSTALLINE SUPERSATURATED SOLID SOLUTION FORMED BY MECHANICAL ALLOYING[J]. 金属学报, 1997, 33(4): 420-426.
[12] YANG Junyou; ZHANG Tongjun; CUI Kun; HU Zhenhua (Huazhong University of Science and Technology; Wuhan 430074)(Manuscript received 1996-03-18). ANALYSIS OF IMPACT BEHAVIOR DURING BALL MILLING[J]. 金属学报, 1997, 33(4): 381-385.
[13] WU Nianqiang;LI Zhizhang(Zhe jiang University;Hangzhou 310027). SOLID-STATE REACTION AND PHASE TRANSFORMATION OF Al_(57.1)C_(42.9) POWDER MIXTURE DURING MECHANICAL ALLOYING[J]. 金属学报, 1997, 33(11): 1155-1160.
[14] ZHOU Lanzhang;GUO Jianting;QUAN Mingxiu(Institute of Metal Research;The Chinese Academy of Sciences;Shenyang 110015). FORMATION MECHANISM OF NiAl/TiC NANOCOMPOSITE BY MECHANICAL ALLOYING[J]. 金属学报, 1997, 33(11): 1222-1226.
[15] YE Lilei; HUANG Jianyu; LIU Zhiguang; QUAN Mingxiu(State Key Laboratory of RSA; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015) (Manuscript received 1995-06-13; in revised form 1995-09-26). COMBUSTION REACTION OF Ni_(20)Ti_(50)C_(30) DURING MECHANICAL ALLOYING[J]. 金属学报, 1996, 32(4): 429-432.
No Suggested Reading articles found!