Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (6): 703-708    DOI: 10.3724/SP.J.1037.2011.00625
论文 Current Issue | Archive | Adv Search |
MOLECULAR DYNAMICS SIMULATION OF THE ATOM CLUSTER EVOLUTION IN COPPER MELT DURING SOLIDIFICATION PROCESS
JIAN Zengyun1, LI Na1, CHANG Fang'e1, FANG Wen1, ZHAO Zhiwei1, DONG Guangzhi1,JIE Wanqi2
1. School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032
2. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
Cite this article: 

JIAN Zengyun, LI Na, CHANG Fang'e, FANG Wen, ZHAO Zhiwei, DONG Guangzhi,JIE Wanqi. MOLECULAR DYNAMICS SIMULATION OF THE ATOM CLUSTER EVOLUTION IN COPPER MELT DURING SOLIDIFICATION PROCESS. Acta Metall Sin, 2012, 48(6): 703-708.

Download:  PDF(1093KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The structure evolution of atom cluster in copper melt and the microstructure of solidificated copper during the solidification process were investigated by using the molecular dynamics simulation method. It was found that the solidificated structure is composed of crystal phase and amorphous phase when the cooling rate is ranged from 1012.6 to 1014.5 K/s. All the structures of the growing crystal, the critical nuclei and the atom cluster in copper melt are the layer mosaic structure constructed by fcc and hcp structure, which indicates that the layer mosaic structure of copper originates from the nucleation. When the cooling rate is lower than 1013.3 K/s, the atom number of hcp structure in the layer mosaic structure in the amorphous matrix is less than that of fcc structure, but when the cooling rate is higher than 1013.3 K/s, the atom number of fcc structure in the layer mosaic structure is less than that of hcp structure. When the size of the atom cluster with the crystalline structure in copper melt is smaller than the critical size of the homogenous nucleation nuclei, radial distribution function cannot reflect out the feature of crystalline structure though the HA bond--type index have confirmed the presence of a certain number of atom bond of crystalline structure.
Key words:  molecular dynamic simulation      cluster      subcritical nuclei     
Received:  30 September 2011     
Fund: 

National Natural Science Foundation of China

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00625     OR     https://www.ams.org.cn/EN/Y2012/V48/I6/703

[1] Gibson J M.  Science, 2009; 326: 942

[2] Bernal J.  Nature, 1959; 183: 141

[3] Qi D W, Wang S.  Phys Rev, 1991; 44B: 884

[4] Liu R S, Dong K J, Tian Z A, Liu H R, Peng P, Yu A B. J Phys: Comdens Matter, 2008; 19: 196103

[5] Wang R S, Hou H Y, Chen G L.  Acta Metall Sin, 2009; 45: 692

    (王荣山, 候怀宇, 陈国良. 金属学报, 2009; 45: 692)

[6] Mondal K, Murty B S.  J Non--Crystalline Solids,2006; 352: 5257

[7] Li Y D, Hao Q H, Cao Q L, Liu C S. Phy Rev, 2008; 78B: 174202

[8] Cheng Z N, Luo X C, Ma J P, Shao J, Chen N Y. Sci China, 1991; 4A: 440

    (程兆年, 罗学才, 马剑鹏, 邵俊, 陈念贻.中国科学, 1991; 4A: 440)

[9] Hui X D, Liu X J, Gao R, Hou H Y, Fang H Z, Liu X K, Chen G L. Sci China, 2008; 38G: 406

    (惠希东, 刘雄军, 高蕊, 侯怀宇, 方华志, 刘梓葵, 陈国良.中国科学, 2008; 38G: 406)

[10] Liu H R, Liu R S, Zhang A L, Hou Z Y, Wang X, Tian Z A. Chin Phys, 2007; 16, 3747

[11] Li J Y, Liu R S, Zhou Z, Xie Q, Peng P.  J Mater Sci Technol, 1998; 14: 461

[12] Ten Wolde P R, Ruiz-Montero M J, Frenkel D.  J Chem Phys, 1996; 104: 9932

[13] Malley B O, Snook I.  Phys Rev Lett, 2003; 90: 085702

[14] Jian Z Y, Chen J, Chang F E, Zeng Z, He T, Jie W Q.  Sci China, 2010; 53E: 3203

[15] Liu C S, Xia J C, Zhu Z G, Sun D Y.  J Chem Phys,2001; 114: 7506

[16] Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F, Kress J D.  Phys Rev, 2001; 63B: 224106

[17] Morris J R, Wang C Z, Ho K M, Chan C T.  Phys Rev,1994; 49B: 3109

[18] Honeycutt J D, Andersen H C.  J Phys Chem, 1987; 91: 4950

[19] Zhao Y, Hu Z Q, Zhao J Z.  Acta Metall Sin,2008; 44: 1157

     (赵毅, 胡壮麒, 赵九洲. 金属学报, 2008; 44: 1157)

[20] Turkdogen E T.  Physical of High Temperature Techonlogy.New York: Academic Press, 1980: 1

[21] Jian Z Y, Li N, Zhu M, Chen J, Chang F E, Jie W Q. Acta Mater, 2012; 60: 3590

[22] David R.  CRC Handbook of Chemistry and Physics.Tokyo: CRC Press, 1989: 1

[23] Jian Z Y, Chang F E, Ma W H, Yan W.  Sci China, 2000; 30E: 10

[24] Brandes E A, Brook G B.  Smithells Metals Refrence Book.7th ed., Oxford: Butterworth, 1992: 1

[25] Guthrie R I L, Iida T.  Mater Sci Eng, 1994; A178: 35

[26] Barin I, Knacke O.  Thermochemical Properties of Inorganic Substances. Berlin: Springer-Verlag, 1973: 1
[1] ZHU Zhihao, CHEN Zhipeng, LIU Tianyu, ZHANG Shuang, DONG Chuang, WANG Qing. Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters[J]. 金属学报, 2023, 59(12): 1581-1589.
[2] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[3] ZHU Xiaohui, LIU Xiangbing, WANG Runzhong, LI Yuanfei, LIU Wenqing. Effects of Ar Ion Irradiation on Microstructure of Fe-Cu Alloys at 290oC[J]. 金属学报, 2022, 58(7): 905-910.
[4] XU Kun, WANG Haichuan, KONG Hui, WU Zhaoyang, ZHANG Zhan. Precipitation Kinetics of Al3Sc in Aluminum Alloys Modeled with a New Grouping Cluster Dynamics Model[J]. 金属学报, 2021, 57(6): 822-830.
[5] LIU Gang, ZHANG Peng, YANG Chong, ZHANG Jinyu, SUN Jun. Aluminum Alloys: Solute Atom Clusters and Their Strengthening[J]. 金属学报, 2021, 57(11): 1484-1498.
[6] WANG Mingkang, YUAN Junhao, LIU Yufeng, WANG Qing, DONG Chuang, ZHANG Zhongwei. Effect of Ti on β Structural Stability and Mechanical Properties of Zr-Nb Binary Alloys[J]. 金属学报, 2021, 57(1): 95-102.
[7] MA Xiaoqiang,YANG Kunjie,XU Yuqiong,DU Xiaochao,ZHOU Jianjun,XIAO Renzheng. Molecular Dynamics Simulation of DisplacementCascades in Nb[J]. 金属学报, 2020, 56(2): 249-256.
[8] GENG Yaoxiang, WANG Yingmin. Local Structure-Property Correlation of Fe-Based Amorphous Alloys: Based on Minor Alloying Research[J]. 金属学报, 2020, 56(11): 1558-1568.
[9] Yuanyuan SONG, Mingjiu ZHAO, Lijian RONG. Study on the Precipitation of γ' in a Fe-Ni Base Alloy During Ageing by APT[J]. 金属学报, 2018, 54(9): 1236-1244.
[10] Yu ZHANG, Qing WANG, Honggang DONG, Chuang DONG, Hongyu ZHANG, Xiaofeng SUN. Nickel-Based Single-Crystal Superalloys (Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W) Designed by Cluster-Plus-Glue-Atom Model and Their 1000 h Long-Term Ageing Behavior at 900 ℃[J]. 金属学报, 2018, 54(4): 591-602.
[11] Chuang DONG, Dandan DONG, Qing WANG. Chemical Units in Solid Solutions andAlloy Composition Design[J]. 金属学报, 2018, 54(2): 293-300.
[12] Xiaolin LI, Yang CUI, Baoliang XIAO, Dawei ZHANG, Zhao JIN, Zheng CHENG. Effects of On-Line Rapid Induction Tempering on Pricipitation Strengthening Mechanism of V(C, N) in V-N Microalloyed Steel[J]. 金属学报, 2018, 54(10): 1368-1376.
[13] Yaoxiang GENG,Xin LIN,Jianbing QIANG,Yingmin WANG,Chuang DONG. Dual-Cluster Characteristic and Composition Optimization of Finemet Soft Magnetic Nanocrystalline Alloys[J]. 金属学报, 2017, 53(7): 833-841.
[14] Yaoxiang GENG,Zhijie ZHANG,Yingmin WANG,Jianbing QIANG,Chuang DONG,Haibin WANG,Ojied TEGUS. Structure-Property Correlation of High Fe-ContentFe-B-Si-Hf Bulk Glassy Alloys[J]. 金属学报, 2017, 53(3): 369-375.
[15] Chao PENG, Yuan LI, Yonghe DENG, Ping PENG. Atomistic Simulation for Local Atomic Structures of Amorphous Ni-P Alloys with Near-Eutectic Compositions[J]. 金属学报, 2017, 53(12): 1659-1668.
No Suggested Reading articles found!