Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (7): 946-953    DOI: 10.3724/SP.J.1037.2011.00157
论文 Current Issue | Archive | Adv Search |
STUDY ON VOID HEALING BEHAVIOR DURING FORGING PROCESS FOR 25Cr2Ni4MoV STEEL
LI Shijian, SUN Mingyue, LIU Hongwei, LI Dianzhong
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

LI Shijian SUN Mingyue LIU Hongwei LI Dianzhong. STUDY ON VOID HEALING BEHAVIOR DURING FORGING PROCESS FOR 25Cr2Ni4MoV STEEL. Acta Metall Sin, 2011, 47(7): 946-953.

Download:  PDF(1531KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Based on the measured stress-strain curves and thermo-physical data of 25Cr2Ni4MoV steel, a FEM model of void closure in heavy forging process was established through ABAQUS software. The void closure behaviors under different hot plasticity conditions have been investigated. The FEM results showed three distinct stages during the void closure. The voids with the same position in a cylindrical specimen close up at a similar height reduction ratio (ΔH/H0) around 25\% at different temperatures, which indicates that the void closure is not sensitive to the deformation temperature. On basis of the FEM results, a physical-simulated experiment for void bonding process has been performed through compression tests on a hollow cylindrical specimens, with deformation temperatures ranging from 900 ℃ to 1200 ℃, ΔH/H0 from 25\% to 45\% and a constant strain rate 0.01 s-1. The experimental results have shown that the ΔH/H0 for the void completely bonded at 1200, 1100 and 1000℃ are all about 35%, but increases to 45\% when the deformation temperature decreased to 900℃, which confirms that void bonding is a diffusion controlled process. Through the experimental results, it can be further demonstrated the high temperature combined with severe deformation can enhance the ability of atoms transition and decrease the micro-gap between contacted surfaces. Finally, the influencing factors on the bonding efficiency were investigated through SEM observation on the fractured surface of the tensile specimen with internal closed void.
Key words:  steel 25Cr2Ni4MoV      forging      void healing      bonding efficiency      simulation     
Received:  23 March 2011     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00157     OR     https://www.ams.org.cn/EN/Y2011/V47/I7/946

[1] National Development and Reform Commission. Nuclear Power Medium– and Long–term Development Program 2005—2020, May, 2007

(国家发展和改革委员会. 核电中长期发展规划(2005-2020年). 2007年5月)

[2] Sigworth G K, Wang C M. Metall Trans, 1993; 24B: 349

[3] Lu Y. The Theory and Process of Forging. Beijing: China Machine Press, 1991: 321

(吕炎. 锻压成形理论与工艺. 北京: 机械工业出版社, 1991: 321)

[4] Kallstrom R. Scand J Metall, 1983; 12: 121

[5] Cook P M. J Iron Steel Inst Jpn, 1959; 4: 250

[6] Wang L G, Huang Y, Liu Z B. J Plast Eng, 2002; 9(2): 28

(王雷刚, 黄瑶, 刘助柏. 塑性工程学报, 2002; 9(2): 28)

[7] Park C Y, Yang D Y. J Mater Process Technol, 1996; 57: 129

[8] Wang A, Thomson P F, Hodgson P D. J Mater Process Technol, 1996; 60: 95

[9] Chen K, Yang Y T, Liu K J, Shao G J. Adv Mater Res, 2010; 11: 3079

[10] Zhang X X, Cui Z S. Appl Math Mech (Engl Ed), 2009; 30: 631

[11] Zhu M. J Beijing Inst Technol, 1990; 10(2): 58

(朱明. 北京理工大学学报, 1990; 10(2): 58)

[12] Cui Z S, Ren G S, Xu B Y, Xu C G, Liu G H. J Tsinghua Univ (Sci Technol), 2003; 43: 227

(崔振山, 任广升, 徐秉业, 徐春国, 刘桂华. 清华大学学报(自然科学版), 2003; 43: 227)

[13] Lee Y S, Kwon Y C, Kwon Y N, Lee J H, Lee S W, Kim N S. Adv Mater Res, 2007; 26: 69

[14] Yuan C L, Zhong Y X, Ma Q X. Sci China, 2002; 45E: 531

[15] Petrov A I, Razuvaeva M V. Phys Solid State, 2005; 47: 880

[16] Schleisiek K, Lechler T, Schafer L, Weimar P. J Nucl Mater, 2000; 283: 1196

[17] Huang H G, Du F S, Xu Z Q. J Iron Steel Res, 2007; 19(11): 55

(黄华贵, 杜凤山, 许志强. 钢铁研究学报, 2007; 19(11): 55)

[18] Liu L J, Cui Z S. J Plast Eng, 2010; 17(1): 1

(刘丽娟, 崔振山. 塑性工程学报, 2010; 17(1): 1)

[19] Park C Y, Yang D Y. J Mater Process Technol, 1997; 72: 32

[20] Tanaka M, Ono S, Tsuneno M, Iwadate T. Adv Technol Plast, 1987; 2: 1035

[21] Morihiko N, Ichiro T, Hirosh U. J Mater Process Technol, 2006; 177: 521

[22] Kakimoto H, Arikawa T, Takahashi Y, Tanaka T, Imaida Y. J Mater Process Technol, 2010; 210: 415
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[3] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[4] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[5] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[6] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[7] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[8] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[9] QI Xiaoyong, LIU Wenbo, HE Zongbei, WANG Yifan, YUN Di. Phase-Field Simulation of the Densification Process During Sintering of UN Nuclear Fuel[J]. 金属学报, 2023, 59(11): 1513-1522.
[10] ZHOU Xiaobin, ZHAO Zhanshan, WANG Wanxing, XU Jianguo, YUE Qiang. Physical and Mathematical Simulation on the Bubble Entrainment Behavior at Slag-Metal Interface[J]. 金属学报, 2023, 59(11): 1523-1532.
[11] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[12] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[13] WANG Meng, YANG Yongqiang, Trofimov Vyacheslav, SONG Changhui, ZHOU Hanxiang, WANG Di. Effects of Particle Size on Processability of AlSi10Mg Alloy Manufactured by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 147-156.
[14] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[15] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
No Suggested Reading articles found!