Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (6): 678-687    DOI: 10.3724/SP.J.1037.2010.00664
论文 Current Issue | Archive | Adv Search |
SIMULATION OF THERMAL BEHAVIOR DURING STEEL SOLIDIFICATION IN SLAB CONTINUOUS CASTING MOLD II. Model Verification and Results Analysis
CAI Zhaozhen, ZHU Miaoyong
School of Materials and Metallurgy, Northeastern University, Shenyang 110004
Cite this article: 

CAI Zhaozhen ZHU Miaoyong. SIMULATION OF THERMAL BEHAVIOR DURING STEEL SOLIDIFICATION IN SLAB CONTINUOUS CASTING MOLD II. Model Verification and Results Analysis. Acta Metall Sin, 2011, 47(6): 678-687.

Download:  PDF(4184KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Based on the thermal–mechanical coupling finite element model described in Part I of present work, the thermal behavior of one high strength ship plate steel solidifying in slab continuous casting mold was simulated with the practical continuous casting conditions of a steel plant, and the availability of the model was verified by in–plant measurement temperature. With this model, the thickness distributions and thermal behavior of air gap, mold flux (including liquid flux and solidified flux), and the variation characteristics of heat flux and surface temperature, as well as the influence of casting speed, mold taper, and mold flux properties on thermal behavior of the steel solidifying in mold were investigated.
Key words:  slab continuous casting      mold      thermal behavior      air gap     
Received:  09 December 2010     
Fund: 

Supported by National Outstanding Young Scientist Foundation of China (No.50925415) and Fundamental Research Funds for the Central University of China (No.N100102001)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00664     OR     https://www.ams.org.cn/EN/Y2011/V47/I6/678

[1] Yamauchi A, Emi T, Seetharaman S. ISIJ Int, 2002; 42: 1084

[2] Cho J W, Shibata H, Emi T. ISIJ Int, 1998; 38: 440

[3] Yamauchi A, Sorimachi K, Sakuraya T, Fujii T. ISIJ Int, 1993; 33: 140

[4] Thomas B G, Moitra A, McDavid R. Iron Steelmaker (ISS Transaction), 1996; 23: 57

[5] CaZ Z, Zhu M Y. Acta Metall Sin, 2011; 47: 671

(蔡兆镇, 朱苗勇. 金属学报, 2011; 47: 671)

[6] Liu X D, Zhu M Y, Cheng N L. Acta Metall Sin, 2006; 42:1081

(刘旭东, 朱苗勇, 程乃良. 金属学报, 2006; 42: 1081)

[7] Li C S, Thomas B G. Metall Trans, 2004; 35B: 1151

[8] Han H N, Lee J E, Yeo T, Won Y M, Kim K H, Oh K H, Yoon J K. ISIJ Int, 1999; 39: 445

[9] Mizukami H, Murakami K. Tetsu Hagan´e, 1977; 63: S652

(水上秀昭, 村上腾彦. 铁と钢,1977; 63: S652)

[10] Uehara M, Samarasekera I V, Brimacombe J K. Ironmaking Steelmaking, 1986; 13: 138

[11] Anand L. Trans ASME, 1982; 104: 12

[12] Brown S B, Kim K H, Anand L. Int J Plast, 1989; 5: 95

[13] Koric S, Thomas B G. J Mater Process Technol, 2008; 197:408

[14] Saraswat R, Maijer D M, Lee P D, Mills K. ISIJ Int, 2007;47: 95

[15] Nakada H, Susa M, Seko Y, Hayashi M, Nagata K. ISIJ Int, 2008; 48: 446
[1] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[2] WANG Chunhui, YANG Guangyu, ALIMASI Aredake, LI Xiaogang, JIE Wanqi. Effect of Printing Parameters of 3DP Sand Mold on the Casting Performance of ZL205A Alloy[J]. 金属学报, 2022, 58(7): 921-931.
[3] LIU Zhongqiu, LI Baokuan, XIAO Lijun, GAN Yong. Modeling Progress of High-Temperature Melt Multiphase Flow in Continuous Casting Mold[J]. 金属学报, 2022, 58(10): 1236-1252.
[4] Ting ZHANG,Yuhong ZHAO,Liwen CHEN,Jianquan LIANG,Muxi LI,Hua HOU. Graphene Nanoplatelets Reinforced Magnesium Matrix Composites Fabricated by Thixomolding[J]. 金属学报, 2019, 55(5): 638-646.
[5] ZHUO Weijia, LIU Yuan, LI Yanxiang. EFFECT OF WITHDRAWING RATE ON PORE MORPHOLOGY OF LOTUS-TYPE POROUS COPPER PRODUCED BY SINGLE-MOLD GASAR TECHNIQUE[J]. 金属学报, 2014, 50(8): 921-929.
[6] LI Dewei, SU Zhijian, CHEN Jin, WANG Qiang, MARUKAWA Katsukiyo, HE Jicheng. NUMERICAL SIMULATION OF SWIRLING FLOW IN DIVERGENT SUBMERGED ENTRY NOZZLE IN ROUND BILLET CONTINUOUS CASTING OF STEEL[J]. 金属学报, 2013, 49(7): 871-880.
[7] LIU Zhongqiu1, LI Baokuan1, JIANG Maofa1, ZHANG Li2, XU Guodong2. LARGE EDDY SIMULATION OF UNSTEADY ARGON/STEEL TWO PHASE TURBULENT FLOW IN A CONTINUOUS CASTING MOLD[J]. 金属学报, 2013, 49(5): 513-522.
[8] JIA Hao ZHANG Zhenqiang YU Zhan DENG Kang LEI Zuosheng REN Zhongming. INFLUENCE OF MAGNETIC FIELD INTENSITY MATCH OF FC MOLD II ON METAL FLOW[J]. 金属学报, 2012, 48(9): 1049-1056.
[9] CHEN Zhihui WANG Engang ZHANG XingwuWANG Yuanhua ZHU Mingwei HE Jicheng. STUDY ON THE BEHAVIOUR OF BUBBLES IN A CONTINUOUS CASTING MOLD WITH Ar INJECTION AND TRAVELING MAGNETIC FIELD[J]. 金属学报, 2012, 48(8): 951-956.
[10] ZOU Shiwen1, LI Xiaogang1,2, DONG Chaofang1,2,LI Huiyan1, XIAO Kui1,2. EFFECT OF MOLD ON CORROSION BEHAVIOR OF PRINTED CIRCUIT BOARD-COPPER AND ENIG FINISHED[J]. 金属学报, 2012, 48(6): 687-695.
[11] LI Baokuan LIU Zhongqiu QI Fengsheng WANG Fang XU Guodong. LARGE EDDY SIMULATION FOR UNSTEADY TURBULENT FLOW IN THIN SLAB CONTINUOUS CASTING MOLD[J]. 金属学报, 2012, 48(1): 23-32.
[12] CAI Zhaozhen ZHU Miaoyong. SIMULATION OF THERMAL BEHAVIOR DURING STEEL SOLIDIFICATION IN SLAB CONTINUOUS CASTING MOLD I. Mathematical Model[J]. 金属学报, 2011, 47(6): 671-677.
[13] WANG Yin ZHANG Zhenqiang YU Zhan JIA Hao DENG Kang LEI Zuosheng REN Zhongming. EXPERIMENTAL STUDY ON FLOWIN SLAB MOLD CONTROLLED BY JET–PATTERN MAGNETIC FIELD[J]. 金属学报, 2011, 47(10): 1285-1291.
[14] LI Baokuan DAI Fengyu QI Fengsheng YANG Ran. FLOW FIELD AND CONCENTRATION FIELD OF ALLOYING ADDITION IN CLAD STEEL CONTINUOUS CASTING MOLD USING LONG AND SHORT NOZZLES[J]. 金属学报, 2010, 46(6): 736-742.
[15] YU Zhan ZHANG Zhenqiang REN Zhongming LEI Zuosheng DENG Kang. STUDY ON THE FLUID FLOW IN SLAB CONTINUOUS CASTING MOLD WITH ELECTROMAGNETIC BRAKE[J]. 金属学报, 2010, 46(10): 1275-1280.
No Suggested Reading articles found!