Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (7): 871-880    DOI: 10.3724/SP.J.1037.2013.00052
Current Issue | Archive | Adv Search |
NUMERICAL SIMULATION OF SWIRLING FLOW IN DIVERGENT SUBMERGED ENTRY NOZZLE IN ROUND BILLET CONTINUOUS CASTING OF STEEL
LI Dewei, SU Zhijian, CHEN Jin, WANG Qiang, MARUKAWA Katsukiyo, HE Jicheng
School of Materials and Metallurgy, Northeastern University, Shenyang 110819
Cite this article: 

LI Dewei, SU Zhijian, CHEN Jin, WANG Qiang, MARUKAWA Katsukiyo, HE Jicheng. NUMERICAL SIMULATION OF SWIRLING FLOW IN DIVERGENT SUBMERGED ENTRY NOZZLE IN ROUND BILLET CONTINUOUS CASTING OF STEEL. Acta Metall Sin, 2013, 49(7): 871-880.

Download:  PDF(9056KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the development of continuous casting technology, the quality of billet has been paid more and more attention recently. It is very important in continuous casting to strictly control the cleanliness of molten steel, and to reduce the defects of billet. The control of flow pattern of molten steel in mold is one of the important means to increase casting efficiency and improve billet quality. Swirling flow in the submerged entry nozzle (SEN) has great effect on improving the uniformity and stability of the outflow from the nozzle in continuous casting of steel process. A new process for swirling flow generation in the SEN has been proposed. That is a rotating electromagnetic field is set up around the SEN to induce swirling flow in it by Lorentz force. In this research, the flow and temperature fields in the SEN and round billet mold with electromagnetic swirling are numerically simulated. The effects of the divergent angle of the SEN with electromagnetic swirling on the flow and temperature fields in the mold are investigated. The simulated results show that, with the increase of the coil current intensity, the magnetic flux density and the swirling flow velocity in the SEN increases. The largest swirling flow velocity in the SEN can reach about 3 m/s in coil current intensity 500 A, frequency 50 Hz. In a divergent angle of the SEN, such as 60℃, when the coil current intensity increases, the impinging depth of the outflow from the nozzle reduces, the upward flow velocity and the meniscus temperature increase. While the coil current intensity increases larger than 350 A, the meniscus temperature changes little. In a certain intensity of swirling flow, such as 350 A, 50 Hz, when the divergent angle of the SEN increases, the upward flow velocity and the meniscus temperature firstly increase and then decrease. In divergent angle 60℃, the upward flow velocity and meniscus temperature get the largest value. In a divergent angle 60℃, coil current intensity 350 A, frequency 50 Hz, with an artificial uneven flow of  0.5 m/s horizontal velocity at the inlet of the SEN,the uneven flow can be suppressed effectively.

Key words:  continuous casting      electromagnetic swirling flow      submerged entry nozzle      mold      simulation     
Received:  25 January 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00052     OR     https://www.ams.org.cn/EN/Y2013/V49/I7/871

[1] Yokoya S, Asako Y, Hara S, Szekely J.  ISIJ Int, 1994; 34: 883

[2] Takagi S, Yokoya S, Iguchi M, Hara S.  ISIJ Int, 1997; 10: 809
[3] Yokoya S, Takagi S, Iguchi M, Asako Y, Westoff R, Hara S.  ISIJ Int, 1998; 38: 827
[4] Yokoya S, Takagi S, Iguchi M, Marukawa K, Yasugaira W, Hara S.  ISIJ Int, 2000; 40: 584
[5] Kholmatov S, Takagi S, Jonsson L, Jonsson P, Yokoya S.  ISIJ Int, 2007; 47: 80
[6] Tsukaguchi Y, Nakamura O, Jonsson P, Yokoya S, Tanaka T, Hara S.  ISIJ Int, 2007; 47: 1436
[7] Jia H H, Yu Z, Lei Z S, Deng K, Chen J C, Hua W J, Ren Z M.  Acta Metall Sin, 2008; 44: 375
(贾洪海, 于湛, 雷作胜, 邓康, 陈家昶, 华文杰, 任忠鸣. 金属学报, 2008; 44: 375)
[8] Cui X C, Liu Z C, Tian X M, Lin J B.  Spec Steel, 2005; 26: 6
(崔小朝, 刘梓才, 田新明, 林金保. 特殊钢, 2005; 26: 6)
[9] Jia H H.  Master Thesis, Shanghai University, 2008
(贾洪海. 上海大学硕士学位论文, 2008)
[10] Tsukaguchi Y, Hayashi H, Yokoya S, Tanaka T, Hara S.  Tetsu Hagan$\acute{e$, 2007; 93: 575
(塚口友一, 林浩~史, 横谷真一郎, 田中敏宏, 原茂太. 鉄と鋼, 2007; 93: 575)
[11] Tsukaguchi Y, Hayashi H, Kurimoto H, Yokoya S, Marukawa K, Tanaka T.  Tetsu Hagane, 2009; 95: 33
(塚口友一, 林浩史, 栗本英典, 横谷真一郎, 丸川雄净, 田中敏宏. 鉄と鋼, 2009; 95: 33)
[12] He J C, Katsukiyo M, Su Z J.  Chin Pat, 200510047290.6, 2005
(赫冀成, 丸川雄净, 苏志坚. 中国专利, 200510047290.6, 2005)
[13] Shu Z J, Li D W, Sun L W, Katsukiyo M, He J C.  Acta Metall Sin, 2010; 46: 479
(苏志坚, 李德伟, 孙立为, 丸川雄净, 赫冀成.金属学报, 2010; 46: 479)
[14] Yoneyama Y, Takeuchi E, Matsuzawa K, Sawada I, Hattori Y, Kishida Y.Nippon Steel Tech Report, 1990; 45: 30
[15] Spitzer K H, Dubke M, Schwerdtfeger K.  Metall Trans, 1986; 17B: 119
[16] Thomas B G, Mika L J, Najjar F M.  Metall Trans, 1990; 21B: 387
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[4] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[5] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[6] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[7] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[8] QI Xiaoyong, LIU Wenbo, HE Zongbei, WANG Yifan, YUN Di. Phase-Field Simulation of the Densification Process During Sintering of UN Nuclear Fuel[J]. 金属学报, 2023, 59(11): 1513-1522.
[9] ZHOU Xiaobin, ZHAO Zhanshan, WANG Wanxing, XU Jianguo, YUE Qiang. Physical and Mathematical Simulation on the Bubble Entrainment Behavior at Slag-Metal Interface[J]. 金属学报, 2023, 59(11): 1523-1532.
[10] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[11] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[12] WANG Meng, YANG Yongqiang, Trofimov Vyacheslav, SONG Changhui, ZHOU Hanxiang, WANG Di. Effects of Particle Size on Processability of AlSi10Mg Alloy Manufactured by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 147-156.
[13] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[14] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[15] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
No Suggested Reading articles found!