Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (6): 671-677    DOI: 10.3724/SP.J.1037.2010.00663
论文 Current Issue | Archive | Adv Search |
SIMULATION OF THERMAL BEHAVIOR DURING STEEL SOLIDIFICATION IN SLAB CONTINUOUS CASTING MOLD I. Mathematical Model
CAI Zhaozhen, ZHU Miaoyong
School of Materials and Metallurgy, Northeastern University, Shenyang 110004
Cite this article: 

CAI Zhaozhen ZHU Miaoyong. SIMULATION OF THERMAL BEHAVIOR DURING STEEL SOLIDIFICATION IN SLAB CONTINUOUS CASTING MOLD I. Mathematical Model. Acta Metall Sin, 2011, 47(6): 671-677.

Download:  PDF(2637KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Thermal behavior of the solidifying shell in continuous casting mold is very important to final steel products. In the present work, one two–dimension transient thermal–mechanical coupling finite element model was developed to simulate the thermal behavior of steel solidifying in slab continuous casting mold by using the sequential coupling method. In this model, in order to get the physical properties of steel at high temperature, a microsegregation model which would give the relationship of phase fractions and temperature for acquiring the physical properties with δ/γ  transformation in mushy zone was established. And the heat flux was obtained according to the displacement between the surface of solidifying shell and the hot face of mold as solidification contraction, the liquid/solid structure and distribution of mold flux, the temperature distribution of slab surface and mold hot face, and air gap distribution. In addition, the rate–dependent elastic–viscoplastic constitutive equation was applied to account for the evolution of shell stress in the mold.
Key words:  slab continuous casting      mold      mold flux       δ/γ  transformation      thermal behavior     
Received:  09 December 2010     
Fund: 

Supported by National Outstanding Young Scientist Foundation of China (No.50925415) and Fundamental Research Funds for the Central University of China (No.N100102001)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00663     OR     https://www.ams.org.cn/EN/Y2011/V47/I6/671

[1] Jing D J, Cai K K. Acta Metall Sin, 2000; 36: 403

(荆德君, 蔡开科. 金属学报, 2000; 36: 403)

[2] Jing D J, Cai K K. J Univ Sci Technol Beijing, 2000; 22: 417

(荆德君, 蔡开科. 北京科技大学学报, 2000; 22: 417)

[3] Wang E G, He J C. Sci Technol Adv Mater, 2001; 2: 257

[4] Savage J, Prichard W H. J Iron and Steel Inst, 1954; 178: 91

[5] Han H N, Lee J E, Yeo T, Won Y M, Kim K H, Oh K H, Yoon J K. ISIJ Int, 1999; 39: 445

[6] Kim K, Han H N, Yeo T, Lee Y, Oh K H, Lee D N. Ironmaking Steelmaking, 1997; 24: 249

[7] Li C S, Thomas B G. Metall Trans, 2004; 35B: 1151

[8] Meng Y, Li C S, Parkman J, Thomas B G. In: Rappaz M ed., Solidification Processes and Microstructures, Charlotte: TMS, 2004: 33

[9] Stone D T, Thomas B G. Can Metall Q, 1999; 38: 363

[10] Ueshima Y, Mioguchi S, Matsumiya T, Kajioka H. Metall Trans, 1986; 17B: 945

[11] EL–Bealy M, Thomas B G. Metall Trans, 1996; 27B: 689

[12] Kawawa T. Tekko–Binran (Handbook for Steel). 3rd Ed. Tokyo: ISIJ, 1981: 205

[13] Nakada H, Susa M, Seko Y, Hayashi M, Nagata K. ISIJ Int, 2008; 48: 446

[14] Watanabe K, Suzuki M, Murakami K, Kondo H, Miyamoto A, Shiomi T. Tetsu Hagan´e, 1997; 83: 115

(渡边圭旧, 铃木真, 村上腾彦, 近藤裕计, 宫本明,yun见刚温,铁と钢, 1997; 83: 115)

[15] Saraswat R, Maijer D M, Lee P D, Mills K C. ISIJ Int, 2007; 47: 95

[16] Tsutsumi K, Nagasaka T, Hino M. ISIJ Int, 1999; 39: 1150

[17] Cho J W, Shibata H, Emi T. ISIJ Int, 1998; 38: 440

[18] Shibata H, Kondo K, Suzuki M, Emi T. ISIJ Int, 1996; 36(Suppl.): S179

[19] Yamauchi A, SorimachK, SakuryT, Fujii T. Tetsun Hagan´e, 1993; 79: 167

(山内章, 反町健一, sui谷敏和, 藤井彻也. 铁と钢; 1993, 79: 167)

[20] Cho J W, Emi T, Shibata H, Suzuki M. ISIJ Int, 1998;38: 834

[21] Xu S L. Algorithm Commonly Used Procedures Set (C Description Language). 3rd Ed, Beijing: Tsinghua University press, 2004: 188

(徐士良. 常用算法程序集(C语言描述)(第三版), 北京: 清华大学出版社,2004: 188)

[22] Yamauchi A, Emi T, Seetharaman S. ISIJ Int, 2002; 42: 1084

[23] Anand L. Trans ASME, 1982; 104: 12

[24] Brown S B, Kim K H, AnanL. Int J Plast, 1989; 5: 95

[25] Clyne T W, Wolf M, Kurz W. Metall Trans, 1982; 13B: 259

[26] Davies G J, Shin Y K. Solidification Technology in the Foundry and Cast House. London: The Metal Society, 1979: 517

[27] Kim K, Yeo T, Oh K H, Lee D N. ISIJ Int, 1996; 36: 284

[28] Matsumiya T, Saeki T, Tanaka J, Ariyoshi T. Tetsu Hagan´e, 1982; 68: 1782

(松宫彻, 佐伯毅,田中純, 有吉敏彦. 铁と钢, 1982, 68: 1782)
[1] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[2] WANG Chunhui, YANG Guangyu, ALIMASI Aredake, LI Xiaogang, JIE Wanqi. Effect of Printing Parameters of 3DP Sand Mold on the Casting Performance of ZL205A Alloy[J]. 金属学报, 2022, 58(7): 921-931.
[3] LIU Zhongqiu, LI Baokuan, XIAO Lijun, GAN Yong. Modeling Progress of High-Temperature Melt Multiphase Flow in Continuous Casting Mold[J]. 金属学报, 2022, 58(10): 1236-1252.
[4] Ting ZHANG,Yuhong ZHAO,Liwen CHEN,Jianquan LIANG,Muxi LI,Hua HOU. Graphene Nanoplatelets Reinforced Magnesium Matrix Composites Fabricated by Thixomolding[J]. 金属学报, 2019, 55(5): 638-646.
[5] ZHUO Weijia, LIU Yuan, LI Yanxiang. EFFECT OF WITHDRAWING RATE ON PORE MORPHOLOGY OF LOTUS-TYPE POROUS COPPER PRODUCED BY SINGLE-MOLD GASAR TECHNIQUE[J]. 金属学报, 2014, 50(8): 921-929.
[6] LI Dewei, SU Zhijian, CHEN Jin, WANG Qiang, MARUKAWA Katsukiyo, HE Jicheng. NUMERICAL SIMULATION OF SWIRLING FLOW IN DIVERGENT SUBMERGED ENTRY NOZZLE IN ROUND BILLET CONTINUOUS CASTING OF STEEL[J]. 金属学报, 2013, 49(7): 871-880.
[7] LIU Zhongqiu1, LI Baokuan1, JIANG Maofa1, ZHANG Li2, XU Guodong2. LARGE EDDY SIMULATION OF UNSTEADY ARGON/STEEL TWO PHASE TURBULENT FLOW IN A CONTINUOUS CASTING MOLD[J]. 金属学报, 2013, 49(5): 513-522.
[8] JIA Hao ZHANG Zhenqiang YU Zhan DENG Kang LEI Zuosheng REN Zhongming. INFLUENCE OF MAGNETIC FIELD INTENSITY MATCH OF FC MOLD II ON METAL FLOW[J]. 金属学报, 2012, 48(9): 1049-1056.
[9] CHEN Zhihui WANG Engang ZHANG XingwuWANG Yuanhua ZHU Mingwei HE Jicheng. STUDY ON THE BEHAVIOUR OF BUBBLES IN A CONTINUOUS CASTING MOLD WITH Ar INJECTION AND TRAVELING MAGNETIC FIELD[J]. 金属学报, 2012, 48(8): 951-956.
[10] ZOU Shiwen1, LI Xiaogang1,2, DONG Chaofang1,2,LI Huiyan1, XIAO Kui1,2. EFFECT OF MOLD ON CORROSION BEHAVIOR OF PRINTED CIRCUIT BOARD-COPPER AND ENIG FINISHED[J]. 金属学报, 2012, 48(6): 687-695.
[11] LI Baokuan LIU Zhongqiu QI Fengsheng WANG Fang XU Guodong. LARGE EDDY SIMULATION FOR UNSTEADY TURBULENT FLOW IN THIN SLAB CONTINUOUS CASTING MOLD[J]. 金属学报, 2012, 48(1): 23-32.
[12] CAI Zhaozhen ZHU Miaoyong. SIMULATION OF THERMAL BEHAVIOR DURING STEEL SOLIDIFICATION IN SLAB CONTINUOUS CASTING MOLD II. Model Verification and Results Analysis[J]. 金属学报, 2011, 47(6): 678-687.
[13] WANG Yin ZHANG Zhenqiang YU Zhan JIA Hao DENG Kang LEI Zuosheng REN Zhongming. EXPERIMENTAL STUDY ON FLOWIN SLAB MOLD CONTROLLED BY JET–PATTERN MAGNETIC FIELD[J]. 金属学报, 2011, 47(10): 1285-1291.
[14] LI Baokuan DAI Fengyu QI Fengsheng YANG Ran. FLOW FIELD AND CONCENTRATION FIELD OF ALLOYING ADDITION IN CLAD STEEL CONTINUOUS CASTING MOLD USING LONG AND SHORT NOZZLES[J]. 金属学报, 2010, 46(6): 736-742.
[15] YU Zhan ZHANG Zhenqiang REN Zhongming LEI Zuosheng DENG Kang. STUDY ON THE FLUID FLOW IN SLAB CONTINUOUS CASTING MOLD WITH ELECTROMAGNETIC BRAKE[J]. 金属学报, 2010, 46(10): 1275-1280.
No Suggested Reading articles found!