Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (2): 231-235    DOI: 10.3724/SP.J.1037.2010.00331
论文 Current Issue | Archive | Adv Search |
Al-Cr COATINGS PREPARED BY DIFFUSION AT LOW TEMPERATURE AND ITS PHASE CHARACTERIZATION
LI Wenchuan, CAI Jun, LING Guoping
Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027
Cite this article: 

LI Wenchuan CAI Jun LING Guoping. Al-Cr COATINGS PREPARED BY DIFFUSION AT LOW TEMPERATURE AND ITS PHASE CHARACTERIZATION. Acta Metall Sin, 2011, 47(2): 231-235.

Download:  PDF(946KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The Al-Cr coating exhibits a good steam oxidation resistance and can act as tritium permeation barrier. It is necessary to prepare Al-Cr coating at low temperatures to avoid detrimental effect on the mechanical properties of the substrate. In the present study, a new process was proposed to prepare Al-Cr coating by electrodeposition of Cr/Al composite coatings firstly, and then heat treatment at low temperatures. The Cr/Al composite coatings were obtained by electrodepositing Cr from aqueous solution followed by electrodepositing Al from AlCl3-EMIC ionic liquid. Effects of the temperature of heat treatment on the composition and phase of alloy layers were studied by using OM, SEM, BSE, EDS and XRD. The results showed that an Al-Cr alloy layer at the Cr/Al interface was formed even at low temperature of 540 ℃ by the interdiffuse between Al and Cr coating. The different Al-Cr alloy layers could be formed by controlling the thickness of Cr and Al in Cr/Al composite coatings. For 6.5 μm Cr/15 μm Al composite coating, the main phase was Al8Cr5 for 960 min heat treatment at 640 ℃, and for 1.6 μm Cr/15 μm Al composite coatings treated at 600 ℃ for 30 min, the main phase of alloy layer was Al4Cr.
Key words:  Al-Cr coating      ionic liquid      Al electrodeposition      heat treatment     
Received:  08 July 2010     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00331     OR     https://www.ams.org.cn/EN/Y2011/V47/I2/231

[1] Zhang Y, Pint B A, Cooley K M, Haynes J A. Surf Coat Technol, 2008; 202: 3839

[2] Konys J, Aiello A, Benamati G, Giancarli L. Fus Sci Technol, 2005; 47: 844

[3] Han S L, Li H L, Wang S M, Jiang L J, Liu X P. Int J Hydrogen Energy, 2010; 35: 2689

[4] Geib F D, Rapp R A. Oxid Met, 1993; 40: 213

[5] Xiang Z D, Datta P K. Surf Coat Technol, 2004; 184: 108

[6] Wang Y Q, Zhang Y, Wilson D A. Surf Coat Technol, 2010; 204: 2737

[7] Si X, Lu B, Wang Z. J Mater Sci Technol, 2009; 25: 433

[8] Xiang Z D, Rose S R, Datta P K, Scheeffer M. Surf Coat Technol, 2009; 203: 1225

[9] Li Y, Ling G P, Liu K Z, Chen C A, Zhang G K. Trans Mater Heat Treat, 2009; 30(5): 182

(李岩, 凌国平, 刘柯钊, 陈长安, 张桂凯. 材料热处理学报, 2009; 30(5): 182)

[10] Nagasaki S, Hirabayashi M. Binary Alloy Phase Diagrams, Tokyo: AGNE Gijutsu Center Co. Ltd., 2002: 29

[11] He Z B, Zou B S, Kuo K H. J Alloys Compd, 2006; 417: L4

[12] Cao B B, Kuo K H. J Alloys Compd, 2008; 458: 238

[13] Wen K Y, Chen Y L, Kuo K H. Metall Trans, 1992; 23A: 2437

[14] Brushko B, Przei´orzy´nski B, Kowalska–Strzeciwilk E, Surowiec M. J Alloys Compd, 2006; 420: L1

[15] Barbier F, Manuelli D, Bouch´e K. Acta Metall, 1997; 36: 425

[16] Tunca N, Delamore G W, Smith R W. Metall Trans, 1990; 21A: 2919

[17] Mahdouk K, Gachon J C. J Phase Equilibria, 2000; 21(2): 157

[18] Okamoto H. J Phase Equilibria Diffus, 2008; 29(1): 112

[19] Grushko B, Kowalska–Strze.ciwilk E, Przepiorzynski B, Surowiec M. J Alloys Compd, 2005; 402: 98
[1] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[2] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[3] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
[4] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[5] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[6] HAN Linzhi, MU Juan, ZHOU Yongkang, ZHU Zhengwang, ZHANG Haifeng. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. 金属学报, 2022, 58(9): 1159-1168.
[7] ZHANG Jiarong, LI Yanfen, WANG Guangquan, BAO Feiyang, RUI Xiang, SHI Quanqiang, YAN Wei, SHAN Yiyin, YANG Ke. Effects of Heat Treatment on Microstructure and Mechanical Properties of a Bimodal Grain Ultra-Low Carbon 9Cr-ODS Steel[J]. 金属学报, 2022, 58(5): 623-636.
[8] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[9] YUAN Bo, GUO Mingxing, HAN Shaojie, ZHANG Jishan, ZHUANG Linzhong. Effect of 3%Zn Addition on the Non-Isothermal Precipitation Behaviors of Al-Mg-Si-Cu Alloys[J]. 金属学报, 2022, 58(3): 345-354.
[10] CHEN Run, WANG Shuai, AN Qi, ZHANG Rui, LIU Wenqi, HUANG Lujun, GENG Lin. Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites[J]. 金属学报, 2022, 58(11): 1478-1488.
[11] WANG Di, HUANG Jinhui, TAN Chaolin, YANG Yongqiang. Review on Effects of Cyclic Thermal Input on Microstructure and Property of Materials in Laser Additive Manufacturing[J]. 金属学报, 2022, 58(10): 1221-1235.
[12] WANG Wenquan, WANG Suyu, CHEN Fei, ZHANG Xinge, XU Yuxin. Microstructure and Mechanical Properties of TiN/Inconel 718 Composites Fabricated by Selective Laser Melting[J]. 金属学报, 2021, 57(8): 1017-1026.
[13] WANG Yue, WANG Jijie, ZHANG Hao, ZHAO Hongbo, NI Dingrui, XIAO Bolv, MA Zongyi. Effects of Heat Treatments on Microstructure and Mechanical Properties of AlSi10Mg Alloy Produced by Selective Laser Melting[J]. 金属学报, 2021, 57(5): 613-622.
[14] ZHANG Shaohua, XIE Guang, DONG Jiasheng, LOU Langhong. Investigation on Eutectic Dissolution Behavior of Single Crystal Superalloy by Differential Scanning Calorimetry[J]. 金属学报, 2021, 57(12): 1559-1566.
[15] HAO Zhibo, GE Changchun, LI Xinggang, TIAN Tian, JIA Chonglin. Effect of Heat Treatment on Microstructure and Mechanical Properties of Nickel-Based Powder Metallurgy Superalloy Processed by Selective Laser Melting[J]. 金属学报, 2020, 56(8): 1133-1143.
No Suggested Reading articles found!