Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (7): 890-896    DOI: 10.3724/SP.J.1037.2010.00099
论文 Current Issue | Archive | Adv Search |
INTERACTION BETWEEN Ti-47Al-2Cr-2Nb ALLOY AND Y2O3 CERAMIC DURING DIRECTIONAL SOLIDIFICATION
ZHANG Huarui, GAO Ming, TANG Xiaoxia, ZHANG Hu
School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191
Cite this article: 

ZHANG Huarui GAO Ming TANG Xiaoxia ZHANG Hu. INTERACTION BETWEEN Ti-47Al-2Cr-2Nb ALLOY AND Y2O3 CERAMIC DURING DIRECTIONAL SOLIDIFICATION. Acta Metall Sin, 2010, 46(7): 890-896.

Download:  PDF(1088KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Interaction between Ti-47Al-2Cr-2Nb alloy and inner layer Y2O3 of Y2O3/Al2O3 double-layer ceramic tube has been investigated during directional solidification. The results show that the Y2O3 layer effectively prevents the chemical reactions between TiAl alloy melt and exterior layer Al2O3 with lower chemical stability by blocking their direct contact. The DS alloy ingot contains Y2O3 inclusions which mainly come from the shedding of Y2O3 from ceramic tube inwall by being penetrated and eroded by fluid alloy melt in the initial phase of the directional solidification test. The average volume fraction of the inclusions is only about 0.14% and is insensitive to time. The re-sintering of the Y2O3 ceramic surface layer occurs and a 2-10 μm dense barrier layer is formed by dint of alloy melt at high temperature. It prevents further pervasion of alloy melt into the Y2O3 ceramic and shedding of imperfectly sintered Y2O3 particles into the alloy melt.

Key words:  TiAl alloy      Y2O3      directional solidification      Y2O3/Al2O3 double layers ceramic tube     
Received:  26 February 2010     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00099     OR     https://www.ams.org.cn/EN/Y2010/V46/I7/890

[1] Loria E A. Intermetallics, 2000; 8: 1339
[2] Li C G, Fu H Z, Yu Q. Aviation and Aerospace Materials. Beijing: National Defence Industry Press, 2002: 16
(李成功, 傅恒志, 于翘. 航空航天材料. 北京: 国防工业出版社, 2002: 16)
[3] Xu X, Shen J, Peng G L. Mater Rev, 2005; 19(6): 105
(许雄, 沈军, 彭桂林. 材料导报, 2005; 19(6): 105)
[4] Inui H, Oh M H, Nakmura A. Acta Metall, 1992; 40: 3095
[5] Kishida K, Johnson D R, Masuda Y. Intermetallics, 1998; 6: 679
[6] Jung I S, Kim M C, Lee J H. Intermetallics, 1999; 7: 1247
[7] Johnson D R, Masuda Y, Inui H, Yamaguchi M. Mater Sci Eng, 1997; A239–240: 577
[8] Johnson D R, Chihara K, Inui H, Yamaguchi M. Acta Mater, 1998; 46: 6529
[9] Lapin J, Ondr´uˇs L. Kovove Mater, 2002; 40: 161
[10] Kim M C, Oh M H, Lee J H, Inui H, Yamaguchi M, Wee D M. Mater Sci Eng, 1997; A239–240: 570
[11] Lapin J, Ondr´uˇs L, Nazmy M. Intermetallics, 2002; 10: 1019
[12] Hecht U, Witusiewicz V, Drevermann A, Zollinger J. Intermetallics, 2008; 16: 969
[13] Jung I S, Jang H S, Oh M H, Lee J H, Wee D M. Mater Sci Eng, 2002; A329–331: 13
[14] Saari H, Beddoes J, Seo D Y, Zhao L. Intermetallics, 2005; 13: 937
[15] Li H X. Refractories manual. Beijing{Metallurgy Technology Press, 2007: 434
(李红霞. 耐火材料手册. 北京: 冶金工业出版社, 2007: 434)
[16] Gschneidner K A, Kippenhan J N. Thermochemistry of the Rare Earths, Ames, IA{Rare Earth Information Center, 1973: 1
[17] Barbosa J, Ribeiro C S, Monteiro A C. Intermetallics, 2007; 15: 945
[18] Wang C X, Zhang Y X. Refractories for Secondary Refining Vessels. Beijing: Metallurgy Technology Press, 2007: 3
(王诚训, 张义先. 炉外精炼用耐火材料. 北京: 冶金工业出版社, 2007: 3)
[19] Li B S, Liu A H, Nan H. Trans Nonferrous Met Soc China, 2008; 18: 518
[20] Kuang J P, Harding R A, Campbell J. Int J CastMet Res, 2001; 13: 22
[21] Saha R L, Nandy T K, Misra R D K, Jacob K T. Metall Trans, 1990; 21B: 558
[22] Lu P W. Foundation of Inorganic Material Science. Wuhan: Wuhan Polytechnic University Press, 1996: 295
(陆佩文. 无机材料科学基础. 武汉: 武汉理工大学出版社, 1996: 295)

[1] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[4] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[5] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[6] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[7] LIU Renci, WANG Peng, CAO Ruxin, NI Mingjie, LIU Dong, CUI Yuyou, YANG Rui. Influence of Thermal Exposure at 700oC on the Microstructure and Morphology in the Surface of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2022, 58(8): 1003-1012.
[8] CHEN Yuyong, YE Yuan, SUN Jianfei. Present Status for Rolling TiAl Alloy Sheet[J]. 金属学报, 2022, 58(8): 965-978.
[9] SONG Qingzhong, QIAN Kun, SHU Lei, CHEN Bo, MA Yingche, LIU Kui. Interfacial Reaction Between Nickel-Based Superalloy K417G and Oxide Refractories[J]. 金属学报, 2022, 58(7): 868-882.
[10] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[11] LI Tianrui, LIU Guohuai, YU Shaoxia, WANG Wenjuan, ZHANG Fengyi, PENG Quanyi, WANG Zhaodong. Microstructure Evolution and Deformation Mechanisms by Direct Hot-Pack Rolling for As-Cast Ti-46Al-8Nb Alloys[J]. 金属学报, 2020, 56(8): 1091-1102.
[12] LIU Xianfeng, LIU Dong, LIU Renci, CUI Yuyou, YANG Rui. Microstructure and Tensile Properties of Ti-43.5Al-4Nb-1Mo-0.1B Alloy Processed by Hot Canned Extrusion[J]. 金属学报, 2020, 56(7): 979-987.
[13] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[14] WANG Xi,LIU Renci,CAO Ruxin,JIA Qing,CUI Yuyou,YANG Rui. Effect of Cooling Rate on Boride and Room Temperature Tensile Properties of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2020, 56(2): 203-211.
[15] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
No Suggested Reading articles found!