|
|
INTERACTION BETWEEN Ti-47Al-2Cr-2Nb ALLOY AND Y2O3 CERAMIC DURING DIRECTIONAL SOLIDIFICATION |
ZHANG Huarui, GAO Ming, TANG Xiaoxia, ZHANG Hu |
School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191 |
|
Cite this article:
ZHANG Huarui GAO Ming TANG Xiaoxia ZHANG Hu. INTERACTION BETWEEN Ti-47Al-2Cr-2Nb ALLOY AND Y2O3 CERAMIC DURING DIRECTIONAL SOLIDIFICATION. Acta Metall Sin, 2010, 46(7): 890-896.
|
Abstract Interaction between Ti-47Al-2Cr-2Nb alloy and inner layer Y2O3 of Y2O3/Al2O3 double-layer ceramic tube has been investigated during directional solidification. The results show that the Y2O3 layer effectively prevents the chemical reactions between TiAl alloy melt and exterior layer Al2O3 with lower chemical stability by blocking their direct contact. The DS alloy ingot contains Y2O3 inclusions which mainly come from the shedding of Y2O3 from ceramic tube inwall by being penetrated and eroded by fluid alloy melt in the initial phase of the directional solidification test. The average volume fraction of the inclusions is only about 0.14% and is insensitive to time. The re-sintering of the Y2O3 ceramic surface layer occurs and a 2-10 μm dense barrier layer is formed by dint of alloy melt at high temperature. It prevents further pervasion of alloy melt into the Y2O3 ceramic and shedding of imperfectly sintered Y2O3 particles into the alloy melt.
|
Received: 26 February 2010
|
[1] Loria E A. Intermetallics, 2000; 8: 1339
[2] Li C G, Fu H Z, Yu Q. Aviation and Aerospace Materials. Beijing: National Defence Industry Press, 2002: 16
(李成功, 傅恒志, 于翘. 航空航天材料. 北京: 国防工业出版社, 2002: 16)
[3] Xu X, Shen J, Peng G L. Mater Rev, 2005; 19(6): 105
(许雄, 沈军, 彭桂林. 材料导报, 2005; 19(6): 105)
[4] Inui H, Oh M H, Nakmura A. Acta Metall, 1992; 40: 3095
[5] Kishida K, Johnson D R, Masuda Y. Intermetallics, 1998; 6: 679
[6] Jung I S, Kim M C, Lee J H. Intermetallics, 1999; 7: 1247
[7] Johnson D R, Masuda Y, Inui H, Yamaguchi M. Mater Sci Eng, 1997; A239–240: 577
[8] Johnson D R, Chihara K, Inui H, Yamaguchi M. Acta Mater, 1998; 46: 6529
[9] Lapin J, Ondr´uˇs L. Kovove Mater, 2002; 40: 161
[10] Kim M C, Oh M H, Lee J H, Inui H, Yamaguchi M, Wee D M. Mater Sci Eng, 1997; A239–240: 570
[11] Lapin J, Ondr´uˇs L, Nazmy M. Intermetallics, 2002; 10: 1019
[12] Hecht U, Witusiewicz V, Drevermann A, Zollinger J. Intermetallics, 2008; 16: 969
[13] Jung I S, Jang H S, Oh M H, Lee J H, Wee D M. Mater Sci Eng, 2002; A329–331: 13
[14] Saari H, Beddoes J, Seo D Y, Zhao L. Intermetallics, 2005; 13: 937
[15] Li H X. Refractories manual. Beijing{Metallurgy Technology Press, 2007: 434
(李红霞. 耐火材料手册. 北京: 冶金工业出版社, 2007: 434)
[16] Gschneidner K A, Kippenhan J N. Thermochemistry of the Rare Earths, Ames, IA{Rare Earth Information Center, 1973: 1
[17] Barbosa J, Ribeiro C S, Monteiro A C. Intermetallics, 2007; 15: 945
[18] Wang C X, Zhang Y X. Refractories for Secondary Refining Vessels. Beijing: Metallurgy Technology Press, 2007: 3
(王诚训, 张义先. 炉外精炼用耐火材料. 北京: 冶金工业出版社, 2007: 3)
[19] Li B S, Liu A H, Nan H. Trans Nonferrous Met Soc China, 2008; 18: 518
[20] Kuang J P, Harding R A, Campbell J. Int J CastMet Res, 2001; 13: 22
[21] Saha R L, Nandy T K, Misra R D K, Jacob K T. Metall Trans, 1990; 21B: 558
[22] Lu P W. Foundation of Inorganic Material Science. Wuhan: Wuhan Polytechnic University Press, 1996: 295
(陆佩文. 无机材料科学基础. 武汉: 武汉理工大学出版社, 1996: 295) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|