Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (8): 984-990    DOI: 10.3724/SP.J.1037.2010.00021
论文 Current Issue | Archive | Adv Search |
NUMERICAL SIMULATION OF WELD POOL KEYHOLING PROCESS IN STATIONARY PLASMA ARC WELDING
WANG Xiaojie, WU Chuansong, CHEN Maoai
Key Lab for Solid–Liquid Structure Evolution and Materials Processing (Ministry of Education), Shandong University, Jinan 250061
Cite this article: 

WANG Xiaojie WU Chuansong CHEN Maoai. NUMERICAL SIMULATION OF WELD POOL KEYHOLING PROCESS IN STATIONARY PLASMA ARC WELDING. Acta Metall Sin, 2010, 46(8): 984-990.

Download:  PDF(1641KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The behaviors of keyhole formation determine to a great degree the deep penetration welding process and the weld depth–width ratio in welding of medium and large thickness plates. Obtaining a deep insight into the dynamic keyholing process in the weld pool in plasma arc welding is of great significance for widening the process parameter–widow and improving the process robustness as well as weld quality stability. Based on the Level–Set theory, a numerical model is developed to describe the keyhole behaviors in the weld pool in stationary plasma arc welding (PAW), and employed to track the evolution process of keyhole boundary. In this paper, the fluid flow fields in both the plasma and the keyhole regions are constructed according to the experimental and simulation data in the previous literatures. The combined volumetric heat source model is used to numerically analyze the transient temperature field and then to determine the weld pool geometry. The algorithm of Level–Set theory combined with the transient thermal conduction model is used to determine the evolution of both keyhole and weld pool geometry at different time steps. The dynamic information on the weld pool and keyhole geometry and sizes under a few process conditions is obtained by the numerical simulation of keyholing phenomena in welding of stainless steel plates. It is found that a complete keyhole is established at 2.7 and 2.5 s for the current levels of 170 and 180 A, respectively. During the stationary PAW process, the cross–section geometry of keyhole transforms from U–shape at initial stage to V– shape later and shows finally a hyperbola shape after a complete keyhole is formed. The numerical analysis of keyhole formation is verified by measuring the efflux plasma voltage signals at the moet of keyholing.

Key words:  Stationary plasma arc welding      keyhole      weld pool      numerical simulation     
Received:  11 January 2010     
Fund: 

Supported by the Key Program of National Natural Science Foundation of China (No.50936003)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00021     OR     https://www.ams.org.cn/EN/Y2010/V46/I8/984

[1] Lin S Y, Du B. Present Situation of Welding Industry and Dependent Innovation Strategy. Report of Harbin Welding Institute, 2006
(林尚扬, 杜兵. 焊接行业现状与自主创新战略. 哈尔滨焊接研究所技术报告, 2006)
[2] Lucas W. In: Japan Welding Society ed., Proc 8th Int Welding Symposium, Osaka, Japan: Japan Welding Society, 2008: 189
[3] Harwig D, Gordon R. In: Davis S A ed., Proc 6th Int Conf on Trends in Welding Research, Materials Park, Ohio: ASM International, 2003: 995
[4] Zhang Y M, Zhang S B, Jiang M. Weld J, 2002; 81: 248s
[5] Zhang Y M, Zhang S B. Weld J, 1999; 75: 53s
[6] Dong C L, Wu L, Shao Y C. China Mech Eng, 2000; 11:577
(董春林, 吴林, 邵亦陈. 中国机械工程, 2000; 11: 577)
[7] Martikainen J. J Mater Process Technol, 1995; 52: 68
[8] Keanini R G, Rubinsky B. Int J Heat Mass Transfer, 1993; 36: 3283
[9] Fan H G, Kovacevic R. J Phys, 1999; 32D: 2902
[10] Nehad A K. Int Comm Heat Mass Transfer, 1995; 22: 779
[11] Dong H G, Gao H M, Wu L. Trans China Weld Inst, 2002; 23(4): 24
(董洪刚, 高洪明, 吴林. 焊接学报, 2002; 23(4): 24)
[12] Lei Y C, Zheng H J, Chng X N. Trans China Weld Inst, 2003; 24(1): 44
(雷玉成, 郑惠锦, 程晓农. 焊接学报, 2003; 24(1): 44)
[13] Li L, Hu S S. J Tianjin Univ, 2007; 40(10): 260
(李力, 胡绳荪. 天津大学学报, 2007; 40(10): 260)
[14] Wu C S, Wang H G, Zhang M X. Acta Metall Sin, 2006; 42: 311
(武传松, 王怀刚, 张明贤. 金属学报, 2006; 42: 311)
[15] Wu C S, Wang H G, Zhang Y M. Weld J, 2006; 85: 284s
[16] Wu C S, Hu Q X, Zhang Y M. Comput Mater Sci, 2009; 46: 49
[17] Osher S, Sethian J A. J Comput Phys, 1988; 79: 12
[18] Ki H, Mohanty P S, Mazumder J. Numer Heat Transfer, 2005; 48B: 125
[19] Wu C S. Welding Thermal Processes and Molten Pool Behaviors. Beijing: China Machine Press, 2008: 106
(武传松. 焊接热过程与熔池形态. 北京: 机械工业出版社, 2008: 106)
[20] Messler Jr R W. Principles of Welding–Processes, PhysicsChemistry and Metallurgy. New York: John Wiley & Sons, Inc. 1999: 291
[21] Wang X J, Wu C S. Research Report of Institute of Materials Joining, Shandong University, 2009
(王小杰, 武传松. 山东大学材料连接研究所技术报告, 2009)

[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[5] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[6] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[7] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[8] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[9] WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process[J]. 金属学报, 2020, 56(4): 619-632.
[10] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[11] Peiyuan DAI,Xing HU,Shijie LU,Yifeng WANG,Dean DENG. Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model[J]. 金属学报, 2019, 55(8): 1058-1066.
[12] ZHANG Qingdong, LIN Xiao, LIU Jiyang, HU Shushan. Modelling of Q&P Steel Heat Treatment Process Based on Finite Element Method[J]. 金属学报, 2019, 55(12): 1569-1580.
[13] LU Shijie, WANG Hu, DAI Peiyuan, DENG Dean. Effect of Creep on Prediction Accuracy and Calculating Efficiency of Residual Stress in Post Weld Heat Treatment[J]. 金属学报, 2019, 55(12): 1581-1592.
[14] Jun LI, Mingxu XIA, Qiaodan HU, Jianguo LI. Solutions in Improving Homogeneities of Heavy Ingots[J]. 金属学报, 2018, 54(5): 773-788.
[15] Zheng LIU, Zhiping CHEN, Tao CHEN. Effects of Crucible Size and Electromagnetic Frequency on Flow During Fabrication of Semisolid A356 Al Alloy Slurry[J]. 金属学报, 2018, 54(3): 435-442.
No Suggested Reading articles found!