Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (4): 451-457    DOI: 10.3724/SP.J.1037.2009.00581
论文 Current Issue | Archive | Adv Search |
MORPHOLOGY AND CRYSTALLOGRAPHIC CHARACTERISTICS OF DEFORMATION BANDS IN Mg ALLOY UNDER HOT DEFORMATION
YANG Xuyue 1;2; JIANG Yupei 1
1. School of Materials Science and Engineering; Central South University; Changsha 410083
2. Key Laboratory of Nonferrous Metal Materials Science and Engineering; Ministry of Education; Central South University; Changsha 410083
Cite this article: 

YANG Xuyue JIANG Yupei. MORPHOLOGY AND CRYSTALLOGRAPHIC CHARACTERISTICS OF DEFORMATION BANDS IN Mg ALLOY UNDER HOT DEFORMATION. Acta Metall Sin, 2010, 46(4): 451-457.

Download:  PDF(3586KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

When metals and alloys are subjected to considerable plastic deformation such as cold-or warm–rolling, characteristic inhomogeneities generally appear as a form of deformation or shear bands. Recently much attention has been given to the deformation mechanism and morphology of fcc and bcc materials. It is well known that such inhomogeneities play an essential role in the process of work–hardening, recrystallization, metal fatigue and fracture. Therefore, in order to obtain the guiding principle for controlling those processes in Mg based alloys, it is indispensable to make clear the details of those inhomogeneous deformation structures in hcp materials. In this work, the inhomogeneous deformation and microscopic features of AZ31 Mg based alloy were studied under compression at temperature ranging from 250 to 400℃ and at a strain rate of 3×10−3 s−1. The analysis of experimental data shows that such inhomogeneities depend on deformation temperature and strain sensitively. At 250 ℃, the {1012} c–axis extension twins and deformation bands appear at around 45° with the compression axis in grain interior when straining to ε=0.1, the {1012} twins continue to grow until they impinge each other and finally most of the original grains are replaced by twinned grains at a strain of about ε=0.2. The boundaries between {1012} twins and their neighbors disappear during twinning. At 300 ℃, in contrast, the non–basal slips are activated, the kink bands with low misorientation angles are frequently evolved in grain interior and they are roughly perpendicular to the (0001) basal plane, further deformation leads to an increase in the number and misorientation angle of the kink bands. The initial grains are fragmented by kinking. With temperature increasing, the spacing of kink bands increase rapidly. The difference between kinking and other deformation bands was discussed in some detail.

Key words:  Mg alloy      inhomogeneous deformation      deformation band      microstructure morphology      twinning      kink band     
Received:  07 September 2009     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00581     OR     https://www.ams.org.cn/EN/Y2010/V46/I4/451

[1] Blicharski M, Dymek S, Wr´obel M. J Mater Process Technol, 1995; 53: 75
[2] Huang X X, Cai D Y, Yao M, Liu Q, Hansen N. Mater Sci Technol, 2000; 8: 35
(黄晓旭, 蔡大勇, 姚枚, 刘庆, Hansen N. 材料科学与工艺, 2000; 8: 35)
[3] Hughes D A. Mater Sci Eng, 2001; A319–321: 46
[4] Cizek P. Mater Sci Eng, 2002; A324: 214
[5] Xu Y B, Zhong W L, Chen Y J, Shen L T, Liu Q, Bai Y L, Meyers M A. Mater Sci Eng, 2001; A299: 287
[6] Li Y, Li S X, Li G Y. Mater Sci Eng, 2004; A372: 221
[7] Morris J R, Scharff J, Ho K M, Turner D E, Ye Y Y, Yoo M H. Philos Mag, 1997; 76: 1065
[8] Agnew S R, Brown D W, Vogel S C, Holden T M. Mater Sci Forum, 2002; 404–407: 747
[9] Higashida K, Takamura J, Narita N. Mater Sci Eng, 1986; 81: 239
[10] Liu Q, Juul Jensen D, Hansen N. Acta Mater, 1998; 46: 5819
[11] Liu Q, Yao Z Y, Godfrey A, Liu W. Acta Metall Sin, 2009; 45: 641
(刘庆, 姚宗勇, A. Godfrey, 刘伟. 金属学报, 2009; 45: 641)
[12] Huang X X, Cai D Y, Liu Q, Yao M. Mater Sci Technol, 2003; 11: 120
(黄晓旭, 蔡大勇, 刘庆, 姚枚. 材料科学与工艺, 2003; 11: 120)
[13] Huang X X, Cai D Y, Yao M, Liu Q, Hansen N. Chin J Nonferrous Met, 2001; 11: 31
(黄晓旭, 蔡大勇, 姚枚, 刘庆, Hansen N. 中国有色金属学报, 2001; 11: 31)
[14] Mironov S, Murzinova M, Zherebtsov S, Salishchev G A, Semiatin S L. Acta Mater, 2009; 57: 2470
[15] Couling S L, Pashak J F, Sturkey L. Trans ASM, 1959; 52: 94
[16] Barnett M R, Nave M D, Bettles C J. Mater Sci Eng, 2004; A386: 2005
[17] Yang X Y, Zhang L. Acta Metall Sin, 2009; 11: 1303
(杨续跃, 张 雷. 金属学报, 2009; 11: 1303)
[18] Yang X Y, Miura H, Sakai T. Mater Trans, 2003; 44: 197
[19] Liu J W, Chen Z H, Chen D. Chin J Nonferrous Met, 2008; 9: 1577
(刘俊伟, 陈振华, 陈 鼎. 中国有色金属学报, 2008; 9: 1577)
[20] Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena. Oxford: Pergamon, 1995:42
[21] Yang P, Mao W M, Ren X P, Tang Q B. Trans Nonferrous Met Soc Chin, 2004; 14: 851
[22] Kuhlmann–Wilsdorf D, Hansen N. Scr Metall Mater, 1991; 25: 1557
[23] Liu Q, Hansen N. Scr Metall Mater, 1995; 32: 1289
[24] Rosen G I, Juul J D, Hughes D A, Hansen N. Acta Metall Mater, 1995; 43: 2563
[25] Yao Z Y, Liu Q, Godfrey A, Liu W. Acta Metall Sin, 2009; 45: 647
(姚宗勇, 刘庆, Godfrey A, 刘伟. 金属学报, 2009; 45: 647)

[1] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[3] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[4] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[5] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[6] PENG Liming, DENG Qingchen, WU Yujuan, FU Penghuai, LIU Ziyi, WU Qianye, CHEN Kai, DING Wenjiang. Additive Manufacturing of Magnesium Alloys by Selective Laser Melting Technology: A Review[J]. 金属学报, 2023, 59(1): 31-54.
[7] FENG Di, ZHU Tian, ZANG Qianhao, LEE Yunsoo, FAN Xi, ZHANG Hao. Solution Behavior of Spray-Formed Hypereutectic AlSiCuMg Alloy[J]. 金属学报, 2022, 58(9): 1129-1140.
[8] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[9] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[10] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[11] LUO Xuan, HAN Fang, HUANG Tianlin, WU Guilin, HUANG Xiaoxu. Microstructure and Mechanical Properties of Layered Heterostructured Mg-3Gd Alloy[J]. 金属学报, 2022, 58(11): 1489-1496.
[12] WANG Kaidong, LIU Yunzhong, ZHAN Qiangkun, HUANG Bin. Effect of Adding Methods of Nucleating Agent on Microstructure and Mechanical Properties of Zr Modified Al-Cu-Mg Alloys Prepared by Selective Laser Melting[J]. 金属学报, 2022, 58(10): 1281-1291.
[13] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
[14] WANG Yue, WANG Jijie, ZHANG Hao, ZHAO Hongbo, NI Dingrui, XIAO Bolv, MA Zongyi. Effects of Heat Treatments on Microstructure and Mechanical Properties of AlSi10Mg Alloy Produced by Selective Laser Melting[J]. 金属学报, 2021, 57(5): 613-622.
[15] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
No Suggested Reading articles found!