Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (9): 1353-1363    DOI: 10.11900/0412.1961.2024.00005
Research paper Current Issue | Archive | Adv Search |
Effect of Austenitizing Temperature on the Microstructure and Mechanical Properties of a 2 GPa Ultra-High Strength Steel
ZHANG Tianyu1, ZHANG Peng2, XIAO Na3, WANG Xiaohai2, LIU Guoqiang2, YANG Zhigang1, ZHANG Chi1()
1 School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
2 National Key Laboratory of Special Vehicle Design and Manufacturing Integration Technology, Norinco Group Inner Mongolia First Machinery Group Co. Ltd., Baotou 014030, China
3 Beijing Automotive Technology Center Co. Ltd., Beijing 101300, China
Cite this article: 

ZHANG Tianyu, ZHANG Peng, XIAO Na, WANG Xiaohai, LIU Guoqiang, YANG Zhigang, ZHANG Chi. Effect of Austenitizing Temperature on the Microstructure and Mechanical Properties of a 2 GPa Ultra-High Strength Steel. Acta Metall Sin, 2025, 61(9): 1353-1363.

Download:  HTML  PDF(5300KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Recently, 2 GPa grade ultra-high strength steel has emerged as a potential candidate material for torsional axles. Nevertheless, studies focusing on the correlation between the microstructure and mechanical properties are scarce. To address this, the current study investigates the impact of austenitizing temperature on the microstructure, tensile mechanical properties, and static torsional properties of 2 GPa grade ultra-high strength steel used in torsion axles. Various techniques including SEM, EBSD, AES, TEM, uniaxial tension, and static torsion are employed. During the austenitizing process, the lamellar cementite in the initial microstructure (composed of pearlite and a minimal amount of ferrite) first spheroidized and then dissolved. This spheroidization process is primarily dominated by discontinuity-assisted spheroidization, with minimal contributions from termination-migration-assisted spheroidization. With increasing austenitizing temperature, the cementite gradually transforms from (Fe, Cr, V)3C to Fe3C, eventually completely dissolving (at the austenitizing temperature of 950 oC). Moreover, the precipitation temperature range of vanadium carbide is consistent with the temperature range of undissolved cementite. Additionally, austenitizing at 850 oC and tempering at 220 oC results in better tensile properties, including a yield strength of 1580 MPa, tensile strength of 2062 MPa, uniform elongation of 8.4%, and total elongation of approximately 12.7%. These improvements are attributed to the precipitation strengthening enabled by cementite and vanadium carbide and the fine grain strengthening provided by fine martensite block sizes. The static torsion test results show that when the austenitizing temperature is 800 and 850 oC, the sample shows the best shear moduli and torsional yield strength due to the increased cementite and vanadium carbide contents, along with fine martensite block sizes. With increasing austenitizing temperature, the shear plastic deformation zone expands, and the predominant fracture mechanism changes from shear fracture to shear ductile fracture, resulting in higher torsional strengths.

Key words:  austenitizing temperature      cementite      tensile mechanical property      torsional property     
Received:  11 January 2024     
ZTFLH:  TG142  
Fund: Inner Mongolia Autonomous Region Science and Technology Major Special Project(2020ZD0027);Open Research Fund from National Key Laboratory of Special Vehicle Design and Manufacturing Integration Technology(GZ-2022KF005)
Corresponding Authors:  ZHANG Chi, professor, Tel: (010)62782361, E-mail: chizhang@mail.tsinghua.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00005     OR     https://www.ams.org.cn/EN/Y2025/V61/I9/1353

Fig.1  Schematic of the heat treatment process (Ac3—austenite transformation finish temperature, AC—air cooling, OQ—oil quenching)
Fig.2  SEM images of the hot-rolling sample (a, b), AES selected area (c) and the element profiles (d)
Fig.3  SEM images of the sample subjected to different austenitizing temperatures of 800 oC (a), 850 oC (b), 900 oC (c), 950 oC (d), and 1000 oC (e) and tempering at 220 oC (The corresponding samples are named Q800T, Q850T, Q900T, Q950T, and Q1000T), and change curves of cementite diameter and volume fraction with austenitizing temperature (f) (Arrows in Figs.3a-c represent the cementites)
Fig.4  Element profiles of precipitate in the Q800T (a), Q850T (b), and Q900T (c, d) samples
(a-c) element distributions of cementite (d) element distributions of VC
Fig.5  TEM images and corresponding STEM-EDS mappings of the Q800T (a), Q850T (b), Q900T (c), and Q950T (d) samples
Fig.6  EBSD orientation imaging mappings of the Q800T (a), Q850T (b), Q900T (c), Q950T (d), and Q1000T (e) samples and statistical diagram of martensitic block sizes (f)
Fig.7  Grain boundary distributions in the Q800T (a), Q850T (b), Q900T (c), Q950T (d), and Q1000T (e) samples (blue line: 2°-15°, red line: 15°-45°, yellow line: > 45°) and statistical diagram of high angle grain boundary ratios (f)
Fig.8  Tensile mechanical properties of the samples with different heat treatments
(a) strength (b) elongation
Fig.9  Torsional shear stress-strain curves of the samples with different heat treatments (Fig.9b is the enlarged view of Fig.9a)
T / oCG / GPaτp0.3 / MPaτm / MPa
80082.611601610
85082.611701680
90081.111501690
95078.811301710
100080.611301690
Table 1  Torsion properties of the samples with different heat treatments
Fig.10  Driving force of VC varies with the austenitizing temperature calculated by Thermo-Calc
Fig.11  SEM images of torsional fracture surfaces of the Q800T (a-c), Q850T (d-f), and Q1000T (g-i) samples
(a, d, g) overviews of the fracture surfaces (b, c, e, f, h, i) crack propagation regimes
[1] Wang Y L, Wen Z Q. Effect of high temperature quenching on strength and toughness of torsion axle [J]. Heat Treat. Met., 2003, 28(7): 31
王延龙, 温志强. 高温淬火对扭力轴强韧性的影响 [J]. 金属热处理, 2003, 28(7): 31
[2] Zhou Z. Dynamic numerical simulation and damage tolerance design of torsion bar under random load [D]. Harbin: Harbin Engineering University, 2004
周 铮. 随机载荷下扭力轴动态响应的数值仿真分析和损伤容限设计 [D]. 哈尔滨: 哈尔滨工程大学, 2004
[3] Wu Z Y. Experimental investigation on effection of torsional prestrain on stretch and fatigue behavior of steel 35CrMo [D]. Kunming: Kunming University of Science and Technology, 2012
吴志煜. 扭转预应变对35CrMo钢拉伸及疲劳性能影响的试验研究 [D]. 昆明: 昆明理工大学, 2012
[4] Zhou G F, Han F, Jiao B Q, et al. Numerical simulation of pre-twist process and limited carrying capacity of a tank torsional axis [J]. J. Beijing Univ. Technol., 2005, 31: 626
周国锋, 韩 飞, 焦标强 等. 坦克扭力轴的预扭处理及极限承载的数值模拟 [J]. 北京工业大学学报, 2005, 31: 626
[5] Yin T W, Shen Y F, Jia N, et al. Controllable selection of martensitic variant enables concurrent enhancement of strength and ductility in a low-carbon steel [J]. Int. J. Plast., 2023, 168: 103704
[6] Gao B, Lai Q Q, Cao Y, et al. Ultrastrong low-carbon nanosteel produced by heterostructure and interstitial mediated warm rolling [J]. Sci. Adv., 2020, 6: eaba8169
[7] Zhou L C, Fang F, Wang L P, et al. Torsion performance of pearlitic steel wires: Effects of morphology and crystallinity of cementite [J]. Mater. Sci. Eng., 2019, A743: 425
[8] Li Y J, Li L L, Kang J, et al. Achieving unprecedented yield strength of 2.2 GPa with high ductility in formed parts using strain-aging [J]. Scr. Mater., 2023, 233: 115521
[9] Lv C Q, Cuo D, GAO H F, et al. Effect of helical deformation on fatigue life of torsion shaft by rolling [J]. J. Plast. Eng., 2019, 26(2): 177
吕彩琴, 郭 东, 高慧峰 等. 滚压加工形成螺旋形变对扭力轴疲劳寿命的影响 [J]. 塑性工程学报, 2019, 26(2): 177
[10] Liang Z Q, Zhang P, Li X Z, et al. A small roller elliptical low-frequency deep rolling machine tool for high-strength steel torque shaft and its usage method [P]. Chin Pat, 202310058214.3, 2023
梁志强, 张 鹏, 李学志 等. 一种高强钢扭力轴的小滚轮椭圆低频深滚机床及使用方法 [P]. 中国专利, 202310058214.3, 2023
[11] Chen Y, Wu C L, Xie P, et al. A phase-transformation-strengthened surface layer on Fe-20Mn-3Al-3Si steel fabricated by mechanical grinding [J]. Acta Metall. Sin., 2014, 50: 423
doi: 10.3724/SP.J.1037.2013.00568
陈 燕, 伍翠兰, 谢 盼 等. 机械磨擦制备的Fe-20Mn-3Al-3Si钢表面相变强化层 [J]. 金属学报, 2014, 50: 423
[12] Liu C F, Lei L P, Zeng P. Surface rolling FE model for numerical simulation [J]. J. Plast. Eng., 2012, 19(2): 17
刘福超, 雷丽萍, 曾 攀. 滚压有限元模型数值模拟 [J]. 塑性工程学报, 2012, 19(2): 17
[13] Majzoobi G H, Azadikhah K, Nemati J. The effects of deep rolling and shot peening on fretting fatigue resistance of Aluminum-7075-T6 [J]. Mater. Sci. Eng., 2009, A516: 235
[14] Wang Y L. Influence of pre-torsion processing on fatigue properties of the torsion bar [D]. Shenyang: Northeastern University, 2014
王玉龙. 预扭处理对扭力轴扭转疲劳性能的影响 [D]. 沈阳: 东北大学, 2014
[15] Li B C, Zhao J P, Zhang Z M. The discuss for temper-temperature of steel 45CrNiMoV [J]. New Technol. New Process, 2003, (4): 33
李保成, 赵家萍, 张治民. 45CrNiMoV钢回火温度讨论 [J]. 新技术新工艺, 2003, (4): 33
[16] Porter D A, Easterling K E, Sherif M Y, translated by Chen L, Yu Y N. Phase Transformations in Metals and Alloys [M]. Beijing: Higher Education Press, 2011: 269
Porter D A, Easterling K E, Sherif M Y著, 陈 冷, 余永宁译. 金属和合金中的相变 [M]. 北京: 高等教育出版社, 2011: 269
[17] Liang K, Yao Z H, Xie X S, et al. Correlation between microstructure and properties of new heat-resistant alloy SP2215 [J]. Acta Metal. Sin., 2023, 59: 797
梁 凯, 姚志浩, 谢锡善 等. 新型耐热合金SP2215组织与性能的关联性 [J]. 金属学报, 2023, 59: 797
[18] Wang B, Zhang P, Liu R, et al. An optimization criterion for fatigue strength of metallic materials [J]. Mater. Sci. Eng., 2018, A736: 105
[19] Pang J C. Investigation on fatigue and fracture of high-strength metallic materials [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2012
庞建超. 高强度金属材料的疲劳与断裂研究 [D]. 沈阳: 中国科学院金属研究所, 2012
[20] Wei X L, Zhang C, Han S Y, et al. High cycle fatigue S-N curve prediction of steels based on transfer learning guided long short term memory network [J]. Int. J. Fatigue, 2022, 163: 107050
[21] Xu Z K. High-cycle fatigue behaviors of martensitic ultra-high strength steel [D]. Hefei: University of Science and Technology of China, 2022
许自宽. 马氏体组织超高强钢高周疲劳行为研究 [D]. 合肥: 中国科学技术大学, 2022
[22] Xu Z K, Wang B, Zhang P, et al. Crack branching and deflection in AISI 4340 steel under cyclic torsional loading [J]. Mater. Sci. Eng., 2023, A863: 144561
[23] Vladar A, Postek M. Electron beam-induced sample contamination in the SEM [J]. Microsc. Microanal., 2005, 11: 764
[24] Li S, Yang Z N, Zhang C, et al. Phase field study of the diffusional paths in pearlite-austenite transformation [J]. Acta Metall. Sin., 2023, 59: 1376
doi: 10.11900/0412.1961.2021.00306
李 赛, 杨泽南, 张 弛 等. 珠光体-奥氏体相变中扩散通道的相场法研究 [J]. 金属学报, 2023, 59: 1376
[25] Cheng Y Y, Zhao G, Xu D M, et al. Effect of austenitizing temperature on microstructures and mechanical properties of Si-Mn hot-rolled plate after quenching and partitioning treatment [J]. Acta Metall. Sin., 2023, 59: 413
doi: 10.11900/0412.1961.2021.00243
程远遥, 赵 刚, 许德明 等. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响 [J]. 金属学报, 2023, 59: 413
doi: 10.11900/0412.1961.2021.00243
[26] Wang Y T, Adachi Y, Nakajima K, et al. Quantitative three-dimensional characterization of pearlite spheroidization [J]. Acta Mater., 2010, 58: 4849
[27] Amos P G K, Bhattacharya A, Nestler B, et al. Mechanisms of pearlite spheroidization: insights from 3D phase-field simulations [J]. Acta Mater., 2018, 161: 400
[28] Jiang S H, Xu X Q, Li W, et al. Strain hardening mediated by coherent nanoprecipitates in ultrahigh-strength steels [J]. Acta Mater., 2021, 213: 116984
[1] XIE Zedong, DING Cancan, WEN Pengyu, LUO Haiwen. Effect of Flash Heating on Microstructure and Mechanical Properties of 2000 MPa Hot Stamping Steel[J]. 金属学报, 2024, 60(12): 1667-1677.
[2] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
[3] Hanchen FENG,Xuegang MIN,Dasheng WEI,Lichu ZHOU,Shiyun CUI,Feng FANG. Effect of Low Temperature Annealing on Microstructure and Mechanical Properties of Ultra-Heavy Cold-DrawnPearlitic Steel Wires[J]. 金属学报, 2019, 55(5): 585-592.
[4] Wensheng XU, Wenzheng ZHANG. An Investigation of the Crystallography of Pearlites Nucleated on the Proeutectoid Cementite[J]. 金属学报, 2019, 55(4): 496-510.
[5] Huidong WU, Goro MIYAMOTO, Zhigang YANG, Chi ZHANG, Hao CHEN, Tadashi FURUHARA. Incomplete Bainite Transformation Accompanied with Cementite Precipitation in Fe-1.5(3.0)%Si-0.4%C Alloys[J]. 金属学报, 2018, 54(3): 367-376.
[6] XUE Yingyu, TANG Jiancheng, ZHUO Haiou, YE Nan, WU Tong, ZHOU Xusheng. MICROSTRUCTURES AND PROPERTIES OF LEAD-FREE FREE-CUTTING GRAPHITE-BRASS PREPARED BY GRAPHITIZATION OF CEMENTITE[J]. 金属学报, 2015, 51(2): 223-229.
[7] WANG Bin, LIU Zhenyu, Feng Jie, ZHOU Xiaoguang, WANG Guodong. PRECIPITATION BEHAVIOR AND PRECIPITATION STRENGTHENING OF NANOSCALE CEMENTITE IN CARBON STEELS DURING ULTRA FAST COOLING[J]. 金属学报, 2014, 50(6): 652-658.
[8] LI Junjie, Godfrey Andrew, LIU Wei. EFFECTS OF AUSTENITIZATION AND COOLING RATES  ON THE MICROSTRUCTURE IN A HYPEREUTECTOID STEEL[J]. 金属学报, 2013, 49(5): 583-592.
[9] ZHENG Chengsi1, LI Longfei1, YANG Wangyue2, SUN Zuqing1. INFLUENCE OF MICROSTRUCTURES OF EUTECTOIDSTEEL ON ROOM TEMPERATURE WORKHARDENING BEHAVIOR[J]. 金属学报, 2013, 49(3): 257-264.
[10] DONG Futao, DU Linxiu, LIU Xianghua, XUE Fei. INFLUENCE OF CONTINUOUS ANNEALING PROCESS ON MICROSTRUCTURE AND PROPERTIES OF BORON CONTAINING ENAMEL STEEL[J]. 金属学报, 2013, 49(10): 1160-1168.
[11] WANG Bin, LIU Zhenyu, ZHOU Xiaoguang, WANG Guodong. CALCULATION OF TRANSFORMATION DRIVING FORCE FOR THE PRECIPITATION OF NANO-SCALED CEMENTITES IN THE HYPOEUTECTOID STEELS THROUGH ULTRA FAST COOLING[J]. 金属学报, 2013, 49(1): 26-34.
[12] WANG Bin, LIU Zhenyu, ZHOU Xiaoguang, WANG Guodong. EFFECT OF COOLING PATH ON THE HOLE-EXPANSION PROPERTY OF MEDIUM CARBON STEEL[J]. 金属学报, 2012, 48(4): 435-440.
[13] LI Longfei, XIA Yangqing, SUN Zuqing, YANG Wangyue. DYNAMIC RECRYSTALLIZATION OF FERRITE IN A MEDIUM-CARBON STEEL WITH TEMPERED MARTENSITE STRUCTURE DURING HOT DEFORMATION[J]. 金属学报, 2010, 46(1): 19-26.
[14] CHEN Wei LI Longfei YANG Wangyue SUN Zuqing HE Jianping. MICROSTRUCTURE EVOLUTION OF HYPEREUTECTOID STEELS DURING WARM DEFORMATION I. Formation of Equiaxial Ferrite and Effects of Al[J]. 金属学报, 2009, 45(2): 151-155.
[15] ;. Dynamic Phase Transformation and Spheroidization of Cementite of Hypereutectoid Steel Containing Aluminum during Deformation[J]. 金属学报, 2008, 44(9): 1069-1075 .
No Suggested Reading articles found!