Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (3): 257-264    DOI: 10.3724/SP.J.1037.2012.00503
Current Issue | Archive | Adv Search |
INFLUENCE OF MICROSTRUCTURES OF EUTECTOIDSTEEL ON ROOM TEMPERATURE WORKHARDENING BEHAVIOR
ZHENG Chengsi1, LI Longfei1, YANG Wangyue2, SUN Zuqing1
1) The State Key Laboratory for Advanced Metals and Materials, University of Science& Technology Beijing, Beijing,100083
2) School of Materials Science and Engineering, University of Science & Technology Beijing, Beijing 100083
Cite this article: 

ZHENG Chengsi1, LI Longfei1, YANG Wangyue2, SUN Zuqing1. INFLUENCE OF MICROSTRUCTURES OF EUTECTOIDSTEEL ON ROOM TEMPERATURE WORKHARDENING BEHAVIOR. Acta Metall Sin, 2013, 49(3): 257-264.

Download:  PDF(1027KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Steels with ultrafine (α+θ) duplex structure, consisting of ferrite matrix (α) with average grainsize of about 1μm and dispersed cementite particles (θ), have been investigated widely in recent years formaking better the work-hardening capability of ultrafine-grained steels. In fact, the ratio of yield strength to tensilestrength for plain carbon steels with ultrafine (α+θ) duplex structure is commonly larger than 0.85. Forstructural material, the low ratio of yield strength to tensile strength is beneficial to absorb external energy anddelay theoccurrence of destruction. However, the ratio of yield strength to tensile strength is still relatively high for steelswith ultrafine (α+θ) duplex structure to act as the structural material. Namely, the work-hardening capability ofultrafine (α+θ) duplex steel needs further improving. It could be feasible for improving the work-hardeningcapability of ultrafine (α+θ) duplex steel to change the form, size and distribution of the cementite. Therefore, it isnecessary to investigate the work--hardening behavior of steel with different cementite states. In the present research, four different microstructures of eutectoid steel were obtained by different thermo-mechanicaltreatments, i.e., lamellar pearlite, spheroidized pearlite, ultrafine (α+θ) duplex structure and fine-grained (α+θ)duplex structure. The effect of different microstructures on the room--temperature work-hardening behavior of theeutectoid steel was analyzed using room temperature tensile tests, SEM and TEM. The results indicated that thework-hardening characters of lamellar pearlite,which initial work hardening rate is large but decreases quickly with strain, have direct relationship with its large tensile strength, small yield ratio and low uniform elongation.Although the initial work hardening rates of the three ferrite/cementite particles duplex structures are lower, theydecrease much slowly with strain comparing with that of lamellar pearlite. Therefore, three types offerrite/cementite particles duplex structures demonstrate good plastic deformation capability. In comparison withspheroidized pearlite, ultrafine (α+θ) duplex structure and fine-grained (α+θ) duplex structure demonstrate better balance between strength and plasticity due to microstructure refinement.

Key words:  eutectoidsteel      differentmicrostructure      mechanicalbehavior      cementite particle      work-hardening     
Received:  24 August 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00503     OR     https://www.ams.org.cn/EN/Y2013/V49/I3/257

[1]Howe AA.Mater SciTechnol, 2000; 16: 1264


[2]Jia D, Ramesh K T, Ma E.Acta Mater, 2003; 51: 3495

[3]Hazra S S, Pereloma E V, Gazder A A.Acta Mater, 2011; 59: 4015

[4]Gazder A A, Hazra S S, Pereloma E V.Mater SciEng, 2011; A530: 492

[5]Akio O, Shiro T, Kotobu N.ISIJ Int, 2004; 44: 1063

[6]Torizuka S, Muramatsu E, NarayanaMurty S V S, Nagai K.Scr Mater, 2006; 55: 751

[7]Zhao M C, Yin F X, Hanamura T, Nagai K, Atrens A.Scr Mater, 2007; 57: 857

[8]Maki T, Furuhara T.Mater Sci Forum, 2003; 426--432: 19

[9]Furuhara T, Mizoguchi T.ISIJ Int, 2004; 45: 392

[10]Song R, Ponge D, Raabe R.Scr Mater, 2005; 52: 1075

[11]Song R, Ponge D, Raabe R.Acta Mater, 2005; 53: 4881

[12]Tsuzaki K, Sato E, Furimoto S, Furuhara T, Maki T.Scr Mater, 1999; 40: 675

[13]Park K T, Kim Y S, Lee J G, Shi D H.Mater SciEng, 2000; A293: 165

[14]Tsuji N, Ueji R, Minamino Y, Saito Y.Scr Mater, 2002; 46: 305

[15]Ueji R, Tsuji N, Minamino Y, Koizumi Y.Acta Mater, 2002; 50: 4177

[16]Park K T, Shin D H.Metall Mater Trans, 2002; 33A: 705

[17]Song R, Ponge D, Raabe D, Kaspar R.Acta Mater, 2005; 53: 845

[18]Tsuchida N, Masuda H, Harada Y, Fukaura K, Tomota Y, Nagai K.Mater SciEng, 2008; A488: 446

[19]Song R, Ponge D, Raabe D, Speer J G, Matlock D K.Mater SciEng, 2006; A441: 1

[20]Yoda R, Shibata K, Morimitsu T, Terada D, Tsuji N.Scr Mater, 2011; 65: 175

[21]Syn C K, Lesuer D, Sherby O D.Metall Mater Trans, 1994; 25A: 1481

[22]Chen W, Li L F, Yang W Y, Sun Z Q, He J P.ActaMetall Sin, 2009; 45: 151

(陈伟, 李龙飞, 杨王玥, 孙祖庆, 何建平. 金属学报, 2009; 45: 151)

[23]Huang Q S, Li L F, Yang W Y, Sun Z Q.ActaMetall Sin, 2007; 43: 724

(黄青松, 李龙飞, 杨王玥, 孙祖庆. 金属学报, 2007; 43: 724)

[24]Oyama T, Sherby O D, Wadsworth J, Walser B.ScrMetall, 1984; 18: 799

[25]Dollar M, Bernstein I M, Thompson A W.ActaMetall, 1988; 36: 311

[26]Ray K K, Mondal D.ActaMetall Mater, 1991; 39: 2201

[27]Ashby M F.Philos Mag, 1970; 21: 399

[28]Kuhlmann-Wilsdorf D.Philos Mag, 1999; 79: 955

[1] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] Miao JIN, Wenquan LI, Shuo HAO, Ruixue MEI, Na LI, Lei CHEN. Effect of Solution Temperature on Tensile Deformation Behavior of Mn-N Bearing Duplex Stainless Steel[J]. 金属学报, 2019, 55(4): 436-444.
[3] Longgang HOU, Mingli LIU, Xindong WANG, Linzhong ZHUANG, Jishan ZHANG. Cryogenic Processing High-Strength 7050 Aluminum Alloy and Controlling of the Microstructures and Mechanical Properties[J]. 金属学报, 2017, 53(9): 1075-1090.
[4] Shenghua ZHANG,Pei WANG,Dianzhong LI,Yiyi LI. INVESTIGATION OF TRIP EFFECT IN ZG06Cr13Ni4Mo MARTENSITIC STAINLESS STEEL BY IN SITU SYNCHROTRON HIGH ENERGY X-RAY DIFFRACTION[J]. 金属学报, 2015, 51(11): 1306-1314.
[5] NIE Wenjin SHANG Chengjia GUAN Hailong ZHANG Xiaobing CHEN Shaohui. CONTROL OF MICROSTRUCTURES OF FERRITE/ BAINITE (F/B) DUAL-PHASE STEELS AND ANALYSIS OF THEIR RESISTANCE TO DEFORMATION BEHAVIOR[J]. 金属学报, 2012, 48(3): 298-306.
[6] LI Longfei, XIA Yangqing, SUN Zuqing, YANG Wangyue. DYNAMIC RECRYSTALLIZATION OF FERRITE IN A MEDIUM-CARBON STEEL WITH TEMPERED MARTENSITE STRUCTURE DURING HOT DEFORMATION[J]. 金属学报, 2010, 46(1): 19-26.
[7] SONG Renbo XIANG Jianying HOU Dongpo REN Peidong. BEHAVIOR AND MECHANISM OF HOT WORK-HARDENING FOR 316L STAINLESS STEEL[J]. 金属学报, 2010, 46(1): 57-61.
[8] BI Hongyun; JIANG Xiaoxia; LI Shizhuo;YANG Jingxian(Institute of Metal Research; Chinese academy of Sciences; Shenyang 110015)(Shenyang Polytechnic University; Shenyang 110023). THE CORROSIVE WEAR BEHAVIOR OF Cr-Mn-N SERIES CASTING STAlNLESS STEEL[J]. 金属学报, 1997, 33(10): 1069-1074.
[9] TUNG Feng'en;WANG Yuming Institute of Materials Science; Jilin University; Changchun. X-RAY ANALYSIS OF WORK-HARDENING PROCESS FOR POLYCRYSTALLINE а-BRASS DURING UNIAXIAL TENSILE TEST[J]. 金属学报, 1989, 25(2): 82-84.
No Suggested Reading articles found!