Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (10): 1160-1168    DOI: 10.3724/SP.J.1037.2013.00187
Current Issue | Archive | Adv Search |
INFLUENCE OF CONTINUOUS ANNEALING PROCESS ON MICROSTRUCTURE AND PROPERTIES OF BORON CONTAINING ENAMEL STEEL
DONG Futao1), DU Linxiu1), LIU Xianghua1), XUE Fei2)
1) State Key Laboratory of Rolling and Automation, Northeastern Universrity, Shenyang 110819
2) College of Electrical Engineering, Hebei United University, Tangshan 063000
Cite this article: 

DONG Futao, DU Linxiu, LIU Xianghua, XUE Fei. INFLUENCE OF CONTINUOUS ANNEALING PROCESS ON MICROSTRUCTURE AND PROPERTIES OF BORON CONTAINING ENAMEL STEEL. Acta Metall Sin, 2013, 49(10): 1160-1168.

Download:  PDF(10497KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Enamel product has been developed and more widely used with the development of metallurgical technology and equipments. Its quality is closely related to its metal substrate which needs both nice mechanical properties to meet deep-drawing request and excellent hydrogen trapping ability to meet sufficient fish-scale resistance. In order to obtain those properties, the influence of continuous annealing process on microstructural characteristics, mechanical properties and hydrogen permeation behavior of boron containing enamel steel was investigated. The material was producedand processed in lab and the continuous annealing process was performed using a continuous annealing simulator. It was found that in annealed sheet using high temperature and short time soaking, the sizes of both ferrite grains and cemetite particles within matrix are relatively larger, pearlite exist independently; while using relatively low temperature and long time soaking, the size of ferrite grains is smaller, cemetite particles within matrix are fine and dispersed, pearlite exist as chains. Within the scope of the annealing process adopted, strengths and work hardening exponent n-values of annealed sheets do not differ much, elongations and plastic anisotropy ratio r-values are both high. High temperature and short time soaking is more advantageous to steel sheet obtaining strong γ-fiber texture, which benefits the deep-drawing of sheet. There are certain scale of MnS inclusions,pearlite and cementite particles, whose interfaces between matrixes can be used as effective hydrogen traps, so the hydrogen diffusion coefficient in steel is quite low. Relatively fine ferrite grains+degenerated pearlite chains and fine dispersive cementite particles in steel sheet annealed using relatively low temperature and long time soaking is more beneficial to reducing hydrogen diffusion rate,improving the fish-scale resistance of enamel steel.

Key words:  enamel steel      fish--scale resistance      continuous annealing      cementite      hydrogen permeation     
Received:  15 April 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00187     OR     https://www.ams.org.cn/EN/Y2013/V49/I10/1160

[1] Johnson H H.  Metall Trans, 1988; 19A: 2371

[2] Nagumo M, Nakamura M, Takai K.  Metall Mater Trans, 2001; 32A: 339
[3] Frappart S, Feaugas X, Creus J, Thebault F, Delattre L, Marchebois H.  Mater Sci Eng,2012; A534: 384
[4] Valentini R, Solina A, Matera S, Gregorio P.  Metall Mater Trans, 1996; 27A: 3773
[5] Enos D G, Scully J R.  Metall Mater Trans, 2002; 33A: 1151
[6] Wei F G, Hara T, Tsuzaki K.  Metall Mater Trans, 2004; 35B: 587
[7] Luu W C, Wu J K.  Mater Lett, 1995; 24: 175
[8] Garet M, Brass A M, Haut C, Guttiez-Solana F.  Corros Sci, 1998; 40: 1073
[9] Otsuka T, Tanabe T.  J Alloys Compd, 2007; 446-447: 655
[10] Shinozaki J, Muto I, Omura T, Numata M, Haraa N.  J Electr Soc, 2011; 158: 302
[11] Ushioda K, Yoshinaga N, Akisue O.  ISIJ Int, 1994; 34: 85
[12] Funukawa Y, Inazumi T, Hosoya Y.  ISIJ Int, 2001; 41: 900
[13] Deva A, Jha B K, Mishra N S.  J Mater Sci, 2009; 44: 3736
[14] Deva A, Jha B K, Mishra N S.  Mater Sci Eng, 2011; A528: 7375
[15] Yu F H, Pan H C, Cao J Q, Zheng W H, Zhu D Z.  Acta Metall Sin, 1995; 31: 140
(俞方华, 潘浩昌, 曹建清, 郑万辉, 朱德彰. 金属学报, 1995; 31: 140)
[16] Sun Q S, Lu J X, Jin L, Zhang Q A, Yuan X M.  Iron Steel, 2000; 35(4): 39
(孙全社, 陆匠心, 金蕾, 张庆安, 袁晓敏. 钢铁, 2000; 35(4): 39)
[17] Sun Q S, Wang X J.  Iron Steel, 2004; 39(5): 59
(孙全社, 王先进. 钢铁, 2004; 39(5): 59)
[18] Nishimura R, Toba K, Yamakawa K.  Corro Sci, 1996; 4: 611
[19] Furuhara T, Moritani T, Sakamoto K, Maki T.  Mater Sci Forum, 2007; 539-543: 4832
[20] Choi S H, Jin Y S.  Mater Sci Eng, 2004; A371: 149
[21] Chen W Y, Tong W P, Zhang H, Zhao X, Zuo L.  Acta Metall Sin, 2010; 46: 1055
(陈炜晔, 佟伟平, 张辉, 赵骧, 左良. 金属学报, 2010; 46: 1055)
[22] Papp G, Geyer D, Giedenbacher G.  Viterous Enameller, 1990; 41: 71
[23] Okuyamas T, Nishimoto A, Kurokawa T.  Viterous Enameller, 1990; 41: 49
[1] JIN Xinyan, CHU Shuangjie, PENG Jun, HU Guangkui. Effect of Dew Point on Selective Oxidation and Decarburization of 0.2%C-1.5%Si-2.5%Mn High Strength Steel Sheet During Continuous Annealing[J]. 金属学报, 2023, 59(10): 1324-1334.
[2] Hanchen FENG,Xuegang MIN,Dasheng WEI,Lichu ZHOU,Shiyun CUI,Feng FANG. Effect of Low Temperature Annealing on Microstructure and Mechanical Properties of Ultra-Heavy Cold-DrawnPearlitic Steel Wires[J]. 金属学报, 2019, 55(5): 585-592.
[3] Wensheng XU, Wenzheng ZHANG. An Investigation of the Crystallography of Pearlites Nucleated on the Proeutectoid Cementite[J]. 金属学报, 2019, 55(4): 496-510.
[4] Huidong WU, Goro MIYAMOTO, Zhigang YANG, Chi ZHANG, Hao CHEN, Tadashi FURUHARA. Incomplete Bainite Transformation Accompanied with Cementite Precipitation in Fe-1.5(3.0)%Si-0.4%C Alloys[J]. 金属学报, 2018, 54(3): 367-376.
[5] Timing ZHANG,Yong WANG,Weimin ZHAO,Xiuyan TANG,Tianhai DU,Min YANG. HYDROGEN PERMEATION PARAMETERS OF X80 STEEL AND WELDING HAZ UNDER HIGH PRESSURE COAL GAS ENVIRONMENT[J]. 金属学报, 2015, 51(9): 1101-1110.
[6] XUE Yingyu, TANG Jiancheng, ZHUO Haiou, YE Nan, WU Tong, ZHOU Xusheng. MICROSTRUCTURES AND PROPERTIES OF LEAD-FREE FREE-CUTTING GRAPHITE-BRASS PREPARED BY GRAPHITIZATION OF CEMENTITE[J]. 金属学报, 2015, 51(2): 223-229.
[7] WANG Bin, LIU Zhenyu, Feng Jie, ZHOU Xiaoguang, WANG Guodong. PRECIPITATION BEHAVIOR AND PRECIPITATION STRENGTHENING OF NANOSCALE CEMENTITE IN CARBON STEELS DURING ULTRA FAST COOLING[J]. 金属学报, 2014, 50(6): 652-658.
[8] LUO Zongan, LIU Jiyuan, FENG Yingying, PENG Wen. EFFECT OF ULTRA-FAST CONTINIOUS ANNEALING ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF LOW Si GRADE Nb-Ti MICROALLOYING TRIP STEEL[J]. 金属学报, 2014, 50(5): 515-523.
[9] LIU Yu, LI Yan, LI Qiang. EFFECT OF CATHODIC POLARIZATION ON HYDROGEN EMBRITTLEMENT SUSCEPTIBILITY OF X80 PIPELINE STEEL IN SIMULATED DEEP SEA ENVIRONMENT[J]. 金属学报, 2013, 49(9): 1089-1097.
[10] LI Junjie, Godfrey Andrew, LIU Wei. EFFECTS OF AUSTENITIZATION AND COOLING RATES  ON THE MICROSTRUCTURE IN A HYPEREUTECTOID STEEL[J]. 金属学报, 2013, 49(5): 583-592.
[11] ZHENG Chengsi1, LI Longfei1, YANG Wangyue2, SUN Zuqing1. INFLUENCE OF MICROSTRUCTURES OF EUTECTOIDSTEEL ON ROOM TEMPERATURE WORKHARDENING BEHAVIOR[J]. 金属学报, 2013, 49(3): 257-264.
[12] HOU Xiaoying, WANG Yeqin, CHEN Peng. EFFECT OF ANNEALING TIME ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF HOT-DIP GALVANIZED TRIP-AIDED SHEET STEELS UNDER ULTRA RAPID HEATING[J]. 金属学报, 2013, 49(10): 1169-1176.
[13] WANG Bin, LIU Zhenyu, ZHOU Xiaoguang, WANG Guodong. CALCULATION OF TRANSFORMATION DRIVING FORCE FOR THE PRECIPITATION OF NANO-SCALED CEMENTITES IN THE HYPOEUTECTOID STEELS THROUGH ULTRA FAST COOLING[J]. 金属学报, 2013, 49(1): 26-34.
[14] WANG Bin, LIU Zhenyu, ZHOU Xiaoguang, WANG Guodong. EFFECT OF COOLING PATH ON THE HOLE-EXPANSION PROPERTY OF MEDIUM CARBON STEEL[J]. 金属学报, 2012, 48(4): 435-440.
[15] XU Yunbo HOU Xiaoying WANG Yeqin WU Di. EFFECTS OF RAPID HEATING CONTINUOUS ANNEALING ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ULTRA HIGH–STRENGTH TRIP–AIDED STEEL[J]. 金属学报, 2012, 48(2): 176-182.
No Suggested Reading articles found!