Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (4): 653-664    DOI: 10.11900/0412.1961.2023.00053
Research paper Current Issue | Archive | Adv Search |
Precipitation Behavior of Primary Carbides in Medium Carbon Nb-Alloyed Steel
LIANG Xuan1,2, HOU Tingping1,2(), ZHANG Dong1,2, TAN Xinyang1,2, WU Kaiming1,2()
1 State Key Laboratory of Refractories and Metallury, Wuhan University of Science and Technology, Wuhan 430081, China
2 Hubei Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, Wuhan 430081, China
Cite this article: 

LIANG Xuan, HOU Tingping, ZHANG Dong, TAN Xinyang, WU Kaiming. Precipitation Behavior of Primary Carbides in Medium Carbon Nb-Alloyed Steel. Acta Metall Sin, 2025, 61(4): 653-664.

Download:  HTML  PDF(3223KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High-performance steels containing niobium have widespread use in high-end manufacturing sectors such as aerospace, automotive, energy, and construction engineering. Due to its capacity as a strong carbide-forming element, Nb favors the formation of NbC. These carbides, dispersed within the matrix, significantly contribute to precipitation strengthening, precipitation hardening, and grain refinement. In addition, Nb serves as a positive segregation element. When steel solidifies from its molten state, Nb segregates in the liquid phase and forms primary NbC carbides. These carbides significantly affect the mechanical properties of steel. Herein, to investigate the effect of Nb content on primary carbides in medium-carbon Nb-alloyed steel, the microstructure including the morphology, size, and distribution of niobium and carbon was characterized through SEM and TEM. To further understand the role of lattice vibrations and electrons at different temperatures, the first principle calculations with quasi-harmonic Debye model were combined to study the evolution of thermodynamic parameters. Primary carbides form because of solute segregation at the solid-liquid interface. For a more detailed investigation, a solute microsegregation model coupled with solidification phase transition was developed. This model was adopted to quantitatively analyze the effects of solidification phase transition and Nb content on solute microsegregation. The experiments yielded the following results: with increasing Nb content, the morphology of primary carbides shifted from spherical to polyhedral geometry. Furthermore, a distinct zonal distribution of primary carbides was observed. The laws of thermodynamics indicate that the increase in free energy change due to electrons at different temperatures is compensated by the decrease in free energy change arising from lattice vibrations, indicating the key role of lattice vibrations in maintaining the stability of NbC. The Gibbs free energy change at different temperatures was negative, indicating the thermostatic stability of NbC. Furthermore, the absence of imaginary frequency in the phonon spectrum indicates the dynamic stability of NbC. From a microsegregation viewpoint, the mass fraction of solute carbon decreases while that of the solute Nb increases at the solidification front during the phase transition from L + δ to L + γ. As the Nb content increases, the solid fraction of the solidification phase transition increases. Increased Nb content promotes the precipitation of primary carbides at low solid fractions.

Key words:  Nb-alloyed steel      primary carbide      thermodynamic mechanism      first principle calculation      microsegregation      solidification phase transition     
Received:  13 February 2023     
ZTFLH:  O614.51  
Fund: National Natural Science Foundation of China(12174296, U1532268, U20A20279);Key Research and Development Program of Hubei Province(2021BAA057);Excellent Young and Middle-aged Science and Technology Innovation Team in Colleges, Universities of Hubei Province(T201903);Zhejiang Provincial Leading Innovation and Entrepreneurship Team(2021R01020)
Corresponding Authors:  HOU Tingping, professor, Tel: 18140522212, E-mail: houtingping@wust.edu.cn;
WU Kaiming, professor, Tel: 13100610041, E-mail: wukaiming@wust.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2023.00053     OR     https://www.ams.org.cn/EN/Y2025/V61/I4/653

SampleCMnNbPSFe
0.1Nb0.22.00.1< 0.005< 0.005Bal.
0.6Nb0.22.00.6< 0.005< 0.005Bal.
1.1Nb0.22.01.1< 0.005< 0.005Bal.
1.6Nb0.22.01.6< 0.005< 0.005Bal.
Table 1  Chemical compositions of the tested steels
Fig.1  Crystal structures of NbC (a), Nb (b), and C (c)
ElementD0δQδD0γQγkδ/Lkγ/L
C0.012781370.800.0761134557.440.190.340
Nb50.2000251960.480.8300266478.960.400.220
Mn0.7600224429.760.0550249366.400.760.780
Table 2  Diffusion constants, diffusion activation energies, and equilibrium partition coefficients of solute elements[33]
Fig.2  SEM images of steels with different Nb contents
(a) 0.1Nb (b) 0.6Nb (c) 1.1Nb (d) 1.6Nb
Fig.3  Bright-field TEM image of the carbide (a) and element distributions of Nb (b) and C (c)
SpeciesLattice constantCell angle / (o)

Formation energy

kJ·mol-1

10-1 nmαβγ
NbCa = b = c = 4.505909090-101.12
4.47[35], 4.471[36], 4.45[37]-104.3[14], -121.58[38]
Nba = b = c = 3.322909090-
Ca = 2.466, b = 2.466, c = 8.2619090120-
Table 3  Optimized lattice constants, cell angles and formation energy of NbC, Nb, and C at 0 K, 0 Pa
Fig.4  Calculated phonon dispersion spectra (a) and total or partial density of states (TDOS, PDOS) (b) for NbC
Fig.5  TDOS and PDOS for NbC (a), and TDOS for Nb (b) and C (c)
Fig.6  Calculated Gibbs free energies including the lattice vibrational and electronic contributions (Gvib, Gel) as a function of temperature for NbC
Fig.7  Change in Gibbs free energies related to lattice vibrations and electrons (ΔGvibGel) (a) and dependence of change in total Gibbs free energy on temperature for NbC (ΔG) (b)
Fig.8  Effect of Nb content on phase transformation during solidification process by Thermo-Calc calculation
(a) 0.1Nb (b) 0.6Nb (c) 1.1Nb (d) 1.6Nb
SampleΔTL + δ + γTstart
0.1Nb0.6-
0.6Nb31724.6
1.1Nb51725.5
1.6Nb71724.7
Table 4  Temperature ranges of three-phase coexistence (ΔTL + δ + γ ) and carbides precipitation temperature (Tstart) for medium carbon steels with different Nb contents
Fig.9  Variation of solute equilibrium partition coeffici-ents kC (a) and kNb (b) with temperature for 1.6Nb steel
Fig.10  Effects of phase transition on solute segregation in 0.1Nb steel (fs is the solid phase volume fraction, w(C)L, fs and w(Nb)L, fs are the concentrations of C and Nb in the residual liquid of steel, respectively)
(a) C (b) Nb
Fig.11  Effects of Nb content on segregation ratios of C (a) and Nb (b) (fsδ/γ is the solid fraction of NbC carbide when L + δ→L + γ phase transition occurs, w(M)L, 0 (M = C, Nb) is the initial mass fraction of M in liquid phase. Different colors of fs represent different steels)
Fig.12  Curves of actual solubility product and equilibrium solubility product at solidification front against solid fraction (The vertical coordinate on the right represents the temperature of the liquid at the solidification front under different solid fractions; fsNbC is the solid fraction of NbC carbide at the beginning stage)
(a) 0.1Nb (b) 0.6Nb (c) 1.1Nb (d) 1.6Nb
fsw(C)L, fsw(Nb)L, fs
0.1Nb0.6Nb1.1Nb1.6Nb0.1Nb0.6Nb1.1Nb1.6Nb
0.3800.2890.2890.2890.2890.1300.7801.4322.084
0.5160.3440.3440.3440.3440.1460.8791.612-
0.6890.3690.3690.4530.4530.2401.440--
0.9480.5470.5460.5480.5490.684---
Table 5  Mass fractions of solute elements C and Nb in liquid at solidification front when fs=fsNbC
Fig.13  Effects of NbC precipitation on solute concentrations of C (a) and Nb (b) for 0.1Nb steel
1 Yang Y. All-optical photodetector based on photothermal effect of MXene Nb2CT x [D]. Tianjin: Tianjin University of Technology, 2022
杨 洋. 基于碳化铌光热效应的全光探测器的研究 [D]. 天津: 天津理工大学, 2022
2 Chu S J, Mao B, Hu G K. Microstructure control and strengthening mechanism of high strength cold rolled dual phase steels for automobile applications [J]. Acta Metall. Sin., 2022, 58: 551
doi: 10.11900/0412.1961.2022.00061
储双杰, 毛 博, 胡广魁. 汽车用先进高强度冷轧双相钢的显微组织调控和强韧化机理 [J]. 金属学报, 2022, 58: 551
doi: 10.11900/0412.1961.2022.00061
3 Li Z Y, Li C R, Zeng Z Y, et al. Thermodynamic study of carbide and nitride precipitation of niobium in 500 MPa high-strength anti-seismic rebars [J]. J. Iron Steel Res., 2020, 32: 727
黎志英, 李长荣, 曾泽芸 等. 高强抗震钢筋中铌的碳、氮化物析出热力学研究 [J]. 钢铁研究学报, 2020, 32: 727
doi: 10.13228/j.boyuan.issn1001-0963.20190238
4 Zhou J, Hu C Y, Hu F, et al. Insight into the effect of Nb microalloying on the microstructure-property relationship of a novel wire rod [J]. J. Mater. Res. Technol., 2022, 16: 276
doi: 10.1016/j.jmrt.2021.11.144
5 Su X, Wang H X, Zhu M, et al. In-situ observation for effect of niobium on pearlite transformation in high-carbon steels [J]. Iron Steel, 2022, 57(4): 88
苏 雪, 王厚昕, 朱 敏 等. 原位观察铌对高碳钢珠光体相变的影响 [J]. 钢铁, 2022, 57(4): 88
6 Tian J Y, Wang H X, Zhu M, et al. Improving mechanical properties in high-carbon pearlitic steels by replacing partial V with Nb [J]. Mater. Sci. Eng., 2022, A834: 142622
7 Zhang Y, Li X X, Wei K, et al. Element segregation in GH4169 superalloy large-scale ingot and billet manufactured by triple-melting [J]. Acta Metall. Sin., 2020, 56: 1123
doi: 10.11900/0412.1961.2020.00101
张 勇, 李鑫旭, 韦 康 等. 三联熔炼GH4169合金大规格铸锭与棒材元素偏析行为 [J]. 金属学报, 2020, 56: 1123
8 Xie Y, Cheng G G, Chen L, et al. Characteristics and generating mechanism of large precipitates in Nb-Ti-microalloyed H13 tool steel [J]. ISIJ Int., 2016, 56: 995
9 Jiang Q C, Sui H L, Guan Q F. Thermal fatigue behavior of new type high-Cr cast hot work die steel [J]. ISIJ Int., 2004, 44: 1103
10 Tchuindjang J T, Lecomte-Beckers J. Fractography survey on high cycle fatigue failure: Crack origin characterisation and correlations between mechanical tests and microstructure in Fe-C-Cr-Mo-X alloys [J]. Int. J. Fatigue, 2007, 29: 713
11 Jang J H, Lee C H, Heo Y U, et al. Stability of (Ti, M)C (M = Nb, V, Mo and W) carbide in steels using first-principles calculations [J]. Acta Mater., 2012, 60: 208
12 Fang C M, van Huis M A, Zandbergen H W. Structural, electronic, and magnetic properties of iron carbide Fe7C3 phases from first-principles theory [J]. Phys. Rev., 2009, 80B: 224108
13 Zhang D, Zheng H, Hou T P, et al. Hardness increases due to (Fe, Cr)2C carbide precipitated during natural aging in high chromium cast iron [J]. Vacuum, 2023, 209: 111766
14 Klymko T, Sluiter M H F. Computing solubility products using ab initio methods precipitation of NbC in low alloyed steel [J]. J. Mater. Sci., 2012, 47: 7601
15 Arroyave R, Shin D, Liu Z K. Ab initio thermodynamic properties of stoichiometric phases in the Ni-Al system [J]. Acta Mater., 2005, 53: 1809
16 Shang S L, Wang Y, Kim D, et al. First-principles thermodynamics from phonon and Debye model: Application to Ni and Ni3Al [J]. Comput. Mater. Sci., 2010, 47: 1040
17 Voller V R. Modeling micro scale phenomena for application in solidification process simulations [A]. Proceedings of the Second International Conference on Processing Materials for Properties [C]. San Francisco: TMS, 2000: 1011
18 Scheil E. Bemerkungen zur Schichtkristallbildung [J]. Int. J. Mater. Res., 1942, 34(3): 70
19 Brody H D, Flemings M C. Solute redistribution in dendritic solidification [J]. Trans. Met. Soc. AJIME, 1966, 236: 615
20 Ohnaka I. Mathematical analysis of solute redistribution during solidification with diffusion in solid phase [J]. Trans. ISIJ, 1986, 26: 1045
21 Clyne T W, Kurz W. Solute redistribution during solidification with rapid solid state diffusion [J]. Metall. Trans., 1981, 12A: 965
22 Voller V R, Beckermann C. Approximate models of microsegregation with coarsening [J]. Metall. Mater. Trans., 1999, 30A: 3016
23 Voller V R, Beckermann C. A unified model of microsegregation and coarsening [J]. Metall. Mater. Trans., 1999, 30A: 2183
24 Liang X, Hou T P, Zhang D, et al. New evaluation of the thermodynamics stability for bcc-Fe [J]. J. Phys.: Condens. Matter., 2022, 34: 455801
25 Otero-de-la-Roza A, Luaña V. GIBBS2: A new version of the quasi-harmonic model code. I. Robust treatment of the static data [J]. Comput. Phys. Commun., 2011, 182: 1708
26 Otero-de-la-Roza A, Abbasi-Pérez D, Luaña V. GIBBS2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation [J]. Comput. Phys. Commun., 2011, 182: 2232
27 Wolverton C, Zunger A. First-principles theory of short-range order, electronic excitations, and spin polarization in Ni-V and Pd-V alloys [J]. Phys. Rev., 1995, 52B: 8813
28 Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Comput. Mater. Sci., 1996, 6: 15
29 Blöchl P E. Projector augmented-wave method [J]. Phys. Rev., 1994, 50B: 17953
30 Togo A, Tanaka I. First principles phonon calculation in materials science [J]. Scr. Mater., 2015, 108: 1
31 Guo W, Long M J, Wu J L, et al. Effect of solute partition coefficient and TiN precipitation on micro-segregation of 22MnB5 steel [J]. Iron Steel, 2022, 57(3): 44
郭 伟, 龙木军, 吴家璐 等. 22MnB5钢溶质分配系数及TiN析出对微观偏析的影响 [J]. 钢铁, 2022, 57(3): 44
32 Won Y M, Thomas B G. Simple model of microsegregation during solidification of steels [J]. Metall. Mater. Trans., 2001, 32A: 1755
33 Fu Y X, Zhu L G, Sun L G, et al. Calculation of high temperature solidification characteristics and high temperature physical properties of high strength steel containing niobium [J]. Steelmaking, 2020, 36(2): 34
付雨潇, 朱立光, 孙立根 等. 含Nb高强钢高温凝固特性与物性参数的计算 [J]. 炼钢, 2020, 36(2): 34
34 Chen M W, Wang Z D. The evolution and morphological stability of a particle in a binary alloy melt [J]. J. Cryst. Growth, 2023, 607: 127113
35 Villars P, Calvet L D. Pearson's Handbook of Crystallographic Data for Intermetallic Phases [M]. Metals Park: American Society for Metals, 1985: 1
36 Nartowski A M, Parkin I P, MacKenzie M, et al. Solid state metathesis routes to transition metal carbides [J]. J. Mater. Chem., 1999, 9: 1275
37 Singh D J, Klein B M. Electronic structure, lattice stability, and superconductivity of CrC [J]. Phys. Rev., 1992, 46B: 14969
38 Zhao C C, Xing X L, Guo J, et al. Micro-properties of (Nb, M)C carbide (M = V, Mo, W and Cr) and precipitation behavior of (Nb, V)C in carbide reinforced coating [J]. J. Alloys Compd., 2019, 788: 852
39 Wang R, Wang S F, Wu X Z. Ab initio study of the thermodynamic properties of rare-earth-magnesium intermetallics MgRE (RE = Y, Dy, Pr, Tb) [J]. Phys. Scr., 2011, 83: 065707
40 Gui L T, Long M J, Huang Y W, et al. Effects of inclusion precipitation, partition coefficient, and phase transition on microsegregation for high-sulfur steel solidification [J]. Metall. Mater. Trans., 2018, 49B: 3280
41 Zhang X W, Zhang L F, Yang W, et al. Thermodynamics and dynamics of MnS inclusions precipitation during solidification process in heavy rail steels [J]. Iron Steel, 2016, 51(9): 30
张学伟, 张立峰, 杨 文 等. 重轨钢中MnS析出热力学和动力学分析 [J]. 钢铁, 2016, 51(9): 30
doi: 10.13228/j.boyuan.issn0449-749x.20160079
42 Chen J X. Data Manual of Common Steelmaking Charts [M]. Beijing: Metallurgical Industry Press, 1984: 565
陈家祥. 炼钢常用图表数据手册 [M]. 北京: 冶金工业出版社, 1984: 565
43 Liu Z Z, Wei J, Cai K K. A coupled mathematical model of microsegregation and inclusion precipitation during solidification of silicon steel [J]. ISIJ Int., 2002, 42: 958
[1] GAO Xinliang, BA Wenyue, ZHANG Zheng, XI Shiping, XU Dong, YANG Zhinan, ZHANG Fucheng. Model and Analysis of Solute Microsegregation in Bainite Rail Steel During Continuous Casting Process[J]. 金属学报, 2024, 60(7): 990-1000.
[2] MA Fang, LU Xingyu, ZHOU Lina, DU Ningyu, LEI Chengshuai, LIU Hongwei, LI Dianzhong. High-Temperature Decomposition Mechanism of M2C Primary Carbide in M50 Steel[J]. 金属学报, 2024, 60(7): 901-914.
[3] LIU Xiang, WANG Yinghao, ZHANG Xiaoxin, CHEN Chaoyue, MENG Jie, YU Jianbo, WANG Jiang, REN Zhongming. Influence of Longitudinal Static Magnetic Field on Microstructure and Microsegregation During Directional Solidification of DD98M Alloy[J]. 金属学报, 2024, 60(12): 1595-1606.
[4] HOU Zhiyuan, LIU Weifeng, XU Bin, SUN Mingyue, SHI Jing, REN Shaofei. Formation and Evolution Mechanism of Voids in M50 Bearing Steel During Thermal Deformation[J]. 金属学报, 2024, 60(1): 57-68.
[5] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[6] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[7] HUANG Yu, CHENG Guoguang, LI Shijian, DAI Weixing. Precipitation Mechanism and Thermal Stability of Primary Carbide in Ce Microalloyed H13 Steel[J]. 金属学报, 2019, 55(12): 1487-1494.
[8] Yuan HOU, Zhongming REN, Jiang WANG, Zhenqiang ZHANG, Xia LI. Effect of Longitudinal Static Magnetic Field on the Columnar to Equiaxed Transition in Directionally Solidified GCr15 Bearing Steel[J]. 金属学报, 2018, 54(5): 801-808.
[9] Hua ZHONG,Chuanjun LI,Jiang WANG,Zhongming REN,Yunbo ZHONG,Weidong XUAN. EFFECT OF A HIGH STATIC MAGNETIC FIELD ON MICROSEGREGATION OF DIRECTIONALLY SOLIDIFIED Al-4.5Cu ALLOY[J]. 金属学报, 2016, 52(5): 575-582.
[10] Erhu YAN,Lixian SUN,Fen XU,Daming XU. PREDICTION OF THE SOLIDIFICATION PATH OF Al-6.32Cu-25.13Mg ALLOY BY A UNIFIED MICROSEGREGATION MODEL COUPLED WITH THERMO-CALC[J]. 金属学报, 2016, 52(5): 632-640.
[11] WANG Ming, MA Dangshen, LIU Zhentian, ZHOU Jian, CHI Hongxiao, DAI Jianqing. EFFECT OF Nb ON SEGREGATION, PRIMARY CARBIDES AND TOUGHNESS OF H13 STEEL[J]. 金属学报, 2014, 50(3): 285-293.
[12] ZHAO Guangwei LI Xinzhong XU Daming FU Hengzhi DU Yong HE Yuehui. A UNIFIED ANALYTICAL MODEL FOR THE PRIMARY SOLIDIFICATION PATH IN TERNARY ALLOYS[J]. 金属学报, 2011, 47(9): 1135-1140.
[13] CHEN Dandan ZHANG Haitao WANG Xiangjie CUI Jianzhong. INVESTIGATION ON MICROSEGREGATION OF Al-4.5%Cu ALLOY PRODUCED BY LOW FREQUENCY ELECTROMAGNETIC CASTING[J]. 金属学报, 2011, 47(2): 185-190.
[14] WANG Gang ZHENG Zhuo CHANG Litao XU Lei CUI Yuyou YANG Rui. CHARACTERIZATION OF TiAl PRE–ALLOYED POWDER AND ITS DENSIFICATION MICROSTRUCTURE[J]. 金属学报, 2011, 47(10): 1263-1269.
[15] YANG Chubin LIU Lin ZHAO Xinbao LIU Gang ZHANG Jun FU Hengzhi. DENDRITE ARM SPACINGS AND MICROSEGREGATIONS IN <001>  AND <011> ORIENTATED SINGLE CRYSTAL SUPERALLOYS DD407[J]. 金属学报, 2011, 47(10): 1246-1250.
No Suggested Reading articles found!