Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (11): 1531-1544    DOI: 10.11900/0412.1961.2022.00544
Research paper Current Issue | Archive | Adv Search |
Evolution of Macrosegregation During Three-Stage Vacuum Arc Remelting of Titanium Alloys
GUO Jie1, HUANG Liqing1,2, WU Jingyang1, LI Junjie1, WANG Jincheng1, FAN Kai2()
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
2 Hunan Xiangtou Goldsky Titanium Industry Technology Co. Ltd., Changde 415001, China
Cite this article: 

GUO Jie, HUANG Liqing, WU Jingyang, LI Junjie, WANG Jincheng, FAN Kai. Evolution of Macrosegregation During Three-Stage Vacuum Arc Remelting of Titanium Alloys. Acta Metall Sin, 2024, 60(11): 1531-1544.

Download:  HTML  PDF(3421KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Macrosegregation is a typical solidification defect formed during vacuum arc remelting (VAR) process. This defect adversely affects the property of ingots as the defect sustains even in the subsequent heat treatment process. In the industrial production of titanium alloys, VAR is repeated thrice to eliminate inclusions and improve the homogenization of composition. However, the evolution of macrosegregation during the different stages of the triple VAR process remains unclear. In this study, the melt flow behavior and macrosegregation of titanium ingots in the multistage VAR process are examined via solidification simulations, considering both buoyancy and electromagnetic force. The results show that the strong fluid flow in the upper part of melting pool eliminates nonuniform concentration along the radial direction of the electrode. In contrast, the nonuniform concentration along the axial direction can be inherited in the sequential ingot. However, with the increase in the depth of melt pool, the sustained melt flow from the bottom to upside can reduce the axial macrosegregation delivery. In addition, the use of the previous ingot directly as the electrode for the subsequent remelting process results in severe macrosegregation. However, turning the previous ingot upside-down at least once during the three-stage VAR process can substantially reduce the macrosegregation. Overall, the simulated macrosegregation of Al and V elements in TC4 ingot agree well with that observed in experiment.

Key words:  macrosegregation      solidification      vacuum arc remelting      titanium alloy      numerical simulation     
Received:  25 October 2022     
ZTFLH:  TG244  
Fund: Research Fund of State Key Laboratory of Solidification Processing in NWPU(2020-TS-06)
Corresponding Authors:  FAN Kai, senior engineer, Tel: (0736)7326915, E-mail: fk@xtjtty.com

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00544     OR     https://www.ams.org.cn/EN/Y2024/V60/I11/1531

Parameter descriptionSymbolValueUnit
Densityρ4170kg·m-3
Diffusion coefficient for V in liquidDlV4.0 × 10-9m2·s-1
Diffusion coefficient for Al in liquidDlAl4.0 × 10-9m2·s-1
Latent heat of fusionL3.77 × 105J·kg-1
Partition coefficient for VkpV0.95-
Partition coefficient for AlkpAl1.08-
Liquidus slope for VmV-2.0K·%-1 (mass fraction)
Liquidus slope for AlmAl-4.44K·%-1 (mass fraction)
Solutal expansion coefficient for VβSV-0.35%-1 (mass fraction)
Solutal expansion coefficient for AlβSAl0.4%-1 (mass fraction)
Heat capacitycp975J·kg-1·K-1
Thermal conductivitykT32.7W·m-1·K-1
Thermal expansion coefficientβT6.5 × 10-5K-1
Viscosity of liquidμl3.1 × 10-3kg·m-1·s-1
Electric conductivityσ1.0 × 106S·m-1
Magnetic permeabilityμ01.26 × 10-6H·m-1
Table 1  Physical parameters of the computational model
Fig.1  Schematics of electrode placement in the triple vacuum arc remelting (VAR) process (The first smelting uses a homogeneous electrode, denoted by A. When the previous ingot is placed upright as an electrode, it is represented by D; when the previous ingot is placed upside down as an electrode, it is represented by R)
(a) VAR1-A (b) VAR2-D (c) VAR2-R
(d) VAR3-D-D (e) VAR3-D-R (f) VAR3-R-D (g) VAR3-R-R
Fig.2  Solute distributions and liquid phase flow vectors in the ingot at different time during the first smelting process (Two solid lines represent the weld pool outlines, the same below. CV—mass fraction of vanadium element)
(a) 1000 s (b) 4300 s (c) 6700 s (d) 8800 s (e) 9000 s (f) 10800 s (g) 12500 s
(a1, b1) enlarged views of liquid phase flow vectors in Fig.2a (a1) and Fig.2b (b1), respectively
Fig.3  Solute distributions and liquid phase flow vectors in the ingot at 1000 s (a1-c1), 2200 s (a2-c2), 3800 s (a3-c3), 5080 s (a4-c4), 6520 s (a5-c5), 8520 s (a6-c6), and 9440 s (a7-c7) during the second smelting process (a1-a7) VAR2-A (b1-b7) VAR2-D (c1-c7) VAR2-R
Fig.4  Radial concentration distribution curves at different time during the second remelting process (The extracted concentration positions are shown by horizontal lines in Fig.3)
(a) comparisons of the three electrode placement results at 2200 s
(b) comparisons of the three electrode placement results at 5080 s
Fig.5  Radial average concentrations in the second remelting electrode (a) and ingot (b) varied with height
Fig.6  Solute distributions and liquid phase flow vectors in the ingot at 1300 s (a1-c1), 2300 s (a2-c2), 3800 s (a3-c3), 8350 s (a4-c4), and 9400 s (a5-c5) during the third smelting process (a1-a5) VAR3-D-D (b1-b5) VAR3-D-R (c1-c5) VAR3-R-R
Fig.7  Radial concentration distribution curves at different time during the third remelting process (The extracted concentration positions are shown by the horizontal lines in Fig.6)
(a) comparison of the three electrode placement results at 1300 s
(b) comparison of the three electrode placement results at 3800 s
Fig.8  Radial average concentrations in the third remelting electrode (a) and ingot (b) varied with height
Fig.9  Comparisons of final concentration distributions of all triple remelting ingots
(a) VAR1-A (b) VAR2-A (c) VAR2-D (d) VAR2-R
(e) VAR3-A (f) VAR3-D-D (g) VAR3-D-R (h) VAR3-R-D (i) VAR3-R-R
Fig.10  Comparisons of the global macrosegregation index (GMI) of each remelting ingot
Fig.11  Simulation results of V element (a1-a7) and Al element (b1-b7) concentration distributions in triple remelting ingot of TC4 alloy (CAl—mass fraction of aluminum element) (a1, b1) VAR1-A (a2, b2) VAR2-D (a3, b3) VAR2-R (a4, b4) VAR3-D-D (a5, b5) VAR3-D-R (a6, b6) VAR3-R-D (a7, b7) VAR3-R-R
Fig.12  GMI of V element (a) and Al element (b) in TC4 alloy ingot under different melting schemes
Fig.13  Ingot sampling procedure and positions 1-9
Fig.14  Comparisons between the simulation and the experimental results of radial V element (a1-a3) and Al element (b1-b3) concentration distributions in the top (a1, b1), middle (a2, b2), and bottom (a3, b3) parts of the final ingot of TC4 alloy after triple remelting
1 Mitchell A, Kawakami A, Cockcroft S L. Segregation in titanium alloy ingots [J]. High Temp. Mater. Processes, 2007, 26: 59
2 Zhao Y Q, Liu J L, Zhou L. Analysis on the segregation of typical β alloying elements of Cu, Fe and Cr in Ti alloys [J]. Rare Met. Mater. Eng., 2005, 34: 531
赵永庆, 刘军林, 周 廉. 典型β型钛合金元素Cu,Fe和Cr的偏析规律 [J]. 稀有金属材料与工程, 2005, 34: 531
3 Liu J L, Zhao Y Q, Zhou L. Segregation of Ti-2.5Cu, Ti-3Fe and Ti-3Cr alloy ingots [J]. Rare Met. Mater. Eng., 2004, 33: 731
刘军林, 赵永庆, 周 廉. Ti-2. 5Cu,Ti-3Fe,Ti-3Cr合金铸锭的偏析 [J]. 稀有金属材料与工程, 2004, 33: 731
4 Yang Z J, Kou H C, Li J S, et al. Macrosegregation behavior of Ti-10V-2Fe-3Al alloy during vacuum consumable arc remelting process [J]. J. Mater. Eng. Perform., 2011, 20: 65
5 Zhao X H, Li J S, Yang Z J, et al. Numerical simulation of fluid flow caused by buoyancy forces during vacuum arc remelting process [J]. J. Shanghai Jiaotong Univ. (Sci.), 2011, 16: 272
6 Zhao X H, Li J S, Yang Z J, et al. Numerical simulation of temperature field in vacuum arc remelting Ti alloy [J]. Spec. Cast. Nonferrous Alloys, 2010, 30: 1001
赵小花, 李金山, 杨治军 等. 钛合金真空自耗电弧熔炼过程中温度场的数值模拟 [J]. 特种铸造及有色合金, 2010, 30: 1001
7 Kou H C, Zhang Y J, Yang Z J, et al. Liquid metal flow behavior during vacuum consumable arc remelting process for titanium [J]. Int. J. Eng. Technol., 2012, 12: 50
8 Davidson P A, He X, Lowe A J. Flow transitions in vacuum arc remelting [J]. Mater. Sci. Technol., 2000, 16: 699
9 Davidson P A, Kinnear D, Lingwood R J, et al. The role of Ekman pumping and the dominance of swirl in confined flows driven by Lorentz forces [J]. Eur. J. Mech., 1999, 18B: 693
10 Chapelle P, Ward R M, Jardy A, et al. Lateral boundary conditions for heat transfer and electrical current flow during vacuum arc remelting of a zirconium alloy [J]. Metall. Mater. Trans., 2009, 40B: 254
11 Shevchenko D M, Ward R M. Liquid metal pool behavior during the vacuum arc remelting of Inconel 718 [J]. Metall. Mater. Trans., 2009, 40B: 263
12 Patel A, Fiore D. On the modeling of vacuum arc remelting process in titanium alloys [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2016, 143: 012017
13 Fan K, Wu L C, Li J J, et al. Numerical simulation of macrosegregation caused by buoyancy driven flow during VAR process for titanium alloys [J]. Rare Met. Mater. Eng., 2020, 49: 871
樊 凯, 吴林财, 李俊杰 等. 钛合金VAR过程中自然对流下的宏观偏析行为模拟 [J]. 稀有金属材料与工程, 2020, 49: 871
14 Revil-Baudard M, Jardy A, Combeau H, et al. Solidification of a vacuum arc-remelted zirconium ingot [J]. Metall. Mater. Trans., 2014, 45B: 51
15 Zagrebelnyy D V. Modeling macrosegregation during the vacuum arc remelting of Ti-10V-2Fe-3Al alloy [D]. West Lafayette: Purdue University, 2007
16 Lv Y F, Meng X J, Li S K. An overview of β fleck in TB6 alloy [J]. Rare Met. Mater. Eng., 2008, 37(): 544
吕逸帆, 孟祥军, 李士凯. TB6合金β斑研究概述 [J]. 稀有金属材料与工程, 2008, 37(): 544
17 Chen Z Q, Gao Q, Liu X, et al. Control of iron segregation in Ti-1023 titanium alloy [J]. Titanium Ind. Prog., 2003, 20(4-5): 56
陈战乾, 高 颀, 刘 新 等. Ti-1023合金铸锭铁偏析控制 [J]. 钛工业进展, 2003, 20(4-5): 56
18 Swaminathan C R, Voller V R. A general enthalpy method for modeling solidification processes [J]. Metall. Trans., 1992, 23B: 651
19 Voller V R, Cross M, Markatos N C. An enthalpy method for convection/diffusion phase change [J]. Int. J. Numer. Methods Eng., 1987, 24: 271
20 Bellet M, Combeau H, Fautrelle Y, et al. Call for contributions to a numerical benchmark problem for 2D columnar solidification of binary alloys [J]. Int. J. Therm. Sci., 2009, 48: 2013
21 Prakash C, Voller V. On the numerical solution of continuum mixture model equations describing binary solid-liquid phase change [J]. Numer. Heat Transfer, 1989, 15B: 171
22 Chapelle P, Jardy A, Bellot J P, et al. Effect of electromagnetic stirring on melt pool free surface dynamics during vacuum arc remelting [J]. J. Mater. Sci., 2008, 43: 5734
23 Kondrashov E N, Musatov M I, Maksimov A Y, et al. Calculation of the molten pool depth in vacuum arc remelting of alloy Vt3-1 [J]. J. Eng. Thermophys., 2007, 16: 19
24 Bellot J P, Ablitzer D, Foster B, et al. Dissolution of hard-alpha inclusions in liquid titanium alloys [J]. Metall. Mater. Trans., 1997, 28B: 1001
25 Zagrebelnyy D, Krane M J M. Segregation development in multiple melt vacuum arc remelting [J]. Metall. Mater. Trans., 2009, 40B: 281
[1] WANG Lin, WEI Chen, WANG Lei, WANG Jun, LI Jinshan. Simulation of Core-Shell Structure Evolution of Cu-Co Immiscible Alloys[J]. 金属学报, 2024, 60(9): 1239-1249.
[2] CAO Shuting, ZHAO Jian, GONG Tongzhao, ZHANG Shaohua, ZHANG Jian. Effects of Cu Content on the Microstructure and Tensile Property of K4061 Alloy[J]. 金属学报, 2024, 60(9): 1179-1188.
[3] ZHOU Mu, WANG Qian, WANG Yanxu, ZHAI Zirong, HE Lunhua, LI Bing, MA Yingjie, LEI Jiafeng, YANG Rui. Effect of Prewelding Pretreatment on Welding Residual Stress of Titanium Alloy Thick Plate[J]. 金属学报, 2024, 60(8): 1064-1078.
[4] ZHU Shaoxiang, WANG Qingjiang, LIU Jianrong, CHEN Zhiyong. Macrosegregation of Zr and Mo in TC19 Titanium Alloy Ingot[J]. 金属学报, 2024, 60(7): 869-880.
[5] GAO Xinliang, BA Wenyue, ZHANG Zheng, XI Shiping, XU Dong, YANG Zhinan, ZHANG Fucheng. Model and Analysis of Solute Microsegregation in Bainite Rail Steel During Continuous Casting Process[J]. 金属学报, 2024, 60(7): 990-1000.
[6] CHEN Cheng, YANG Guangyu, JIN Menghui, WANG Qiang, TANG Xin, CHENG Huimin, JIE Wanqi. Effect of the Mold Positive and Negative Rotation on the Microstructure and Room-Temperature Mechanical Properties of K4169 Superalloy[J]. 金属学报, 2024, 60(7): 926-936.
[7] CHENG Kun, CHEN Shuming, CAO Shuo, LIU Jianrong, MA Yingjie, FAN Qunbo, CHENG Xingwang, YANG Rui, HU Qingmiao. Precipitation Strengthening in Titanium Alloys from First Principles Investigation[J]. 金属学报, 2024, 60(4): 537-547.
[8] YANG Jie, HUANG Sensen, YIN Hui, ZHAI Ruizhi, MA Yingjie, XIANG Wei, LUO Hengjun, LEI Jiafeng, YANG Rui. Inhomogeneity Analyses of Microstructure and Mechanical Properties of TC21 Titanium Alloy Variable Cross-section Die Forgings for Aviation[J]. 金属学报, 2024, 60(3): 333-347.
[9] DONG Shihu, ZHANG Hongwei, LÜ Wenpeng, LEI Hong, WANG Qiang. Numerical Simulation on Macrosegregation in Fe-C Alloy Under Solidification Shrinkage Through Interface Tracking-Dynamic Mesh Technique[J]. 金属学报, 2024, 60(3): 388-404.
[10] ZHU Rui, WANG Junjie, ZHANG Yunhu, TIAN Zhichao, MIAO Xincheng, ZHAI Qijie. Flow and Solidification Microstructure in Metal Melts Driven by a Combined Magnetic Field[J]. 金属学报, 2024, 60(2): 231-246.
[11] WANG Yong, ZHANG Weiwen, YANG Chao, WANG Zhi. Mechanical Properties and Deformation Behavior of a Nanostructured Aluminum Alloy Toughened by Titanium Alloy Base Three-Dimensional Lattice Structure[J]. 金属学报, 2024, 60(2): 247-260.
[12] WEI Chen, WANG Jun, YAN Yujie, FAN Jiayi, LI Jinshan. Solidification Microstructure and Wear Properties of Undercooled Cu-Co/Cu-Co-Fe Alloys Under a High Magnetic Field[J]. 金属学报, 2024, 60(11): 1571-1583.
[13] CHEN Mingyi, HU Junwei, YU Yaochen, NIU Haiyang. Advances in Machine Learning Molecular Dynamics to Assist Materials Nucleation and Solidification Research[J]. 金属学报, 2024, 60(10): 1329-1344.
[14] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[15] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
No Suggested Reading articles found!