Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (9): 1279-1288    DOI: 10.11900/0412.1961.2022.00622
Research paper Current Issue | Archive | Adv Search |
Phase Field Simulation of Bubble Evolution Dynamics in Fe-Cr Alloys
LIU Caiyan1, FENG Zehua1, ZHANG Yunpeng1, YU Kang2, WU Lu3, MA Cong3, ZHANG Jing2()
1.School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
2.State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
3.Nuclear Power Institute of China, Chengdu 610005, China
Cite this article: 

LIU Caiyan, FENG Zehua, ZHANG Yunpeng, YU Kang, WU Lu, MA Cong, ZHANG Jing. Phase Field Simulation of Bubble Evolution Dynamics in Fe-Cr Alloys. Acta Metall Sin, 2024, 60(9): 1279-1288.

Download:  HTML  PDF(2062KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Fe-Cr alloys are essential materials for core reactor components. The long-term in-core service of these components under intense radiation, thermal, and stress coupling conditions may potentially expedite the degradation of their mechanical properties. Radiation defects and insoluble helium gas molecules are generally trapped in voids or grain boundaries, forming intra- or intergranular fission gas bubbles. These bubbles cause irreversible radiation volumetric swelling and brittleness. However, a comprehensive understanding of the bubble formation process, particularly the effects of Cr content and dislocation stress field on the formation, remains unclear. As a mesoscale simulation approach, the phase field model coupled with irradiation, temperature, and elastic stress has been employed to study bubble evolution influenced by alloy composition and dislocation configuration. This approach offers advantages when addressing bubble-formation-related issues on different spatial and temporal scales. In this work, the phase field method is employed to investigate bubble growth kinetics and the effects of Cr content and dislocation stress field on bubble formation and evolution in Fe-Cr alloy under radiation. The simulations reveal that in an oversaturated gas and vacancy system, gas atoms tend to cluster at heterogeneous nucleation sites, such as vacancy clusters and dislocations, and grow by absorbing vacancy and gas atoms. The bubbles maintain a constant gas concentration up to a certain size as they continue to grow by absorbing vacancies. However, when the vacancy saturation is high, a bubble will behave as a void if its outward pressure is lower than the equilibrium pressure of a bubble of the same size. Cr additives reduce the diffusion rate of gas atoms and vacancies, extending the nucleation period of bubbles and decelerating their growth and coarsening. Dislocations cause vacancies and gaseous atoms to aggregate in the tension stress regions of the edge dislocation, enhancing the bubble's preferential heterogeneous nucleation in that area. This work discusses key kinetic elements affecting bubble evolution, including intrinsic microstructures and diffusivity. Further, it provides inspiration for future material designs for improving irradiation resistance and long-term service stability.

Key words:  bubble      phase field      irradiation      stress field     
Received:  08 December 2022     
ZTFLH:  TL341  
Fund: National Natural Science Foundation of China(U2267253,51704243);Natural Science Basic Research Plan in Shaanxi Province of China(2022JM-238)
Corresponding Authors:  ZHANG Jing, professor, Tel: 13325382529, E-mail: jingzhang@nwpu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00622     OR     https://www.ams.org.cn/EN/Y2024/V60/I9/1279

Fig.1  Schematics of coordinate system transformation of edge dislocation model
(a) configuration before the transformation, the black coordinate system is the original, the red coordinate system is the new, and the green plane is the plane where the dislocation is located ( b —Burgers vector)
(b) configuration after the transformation
ParameterSymbolValue
Characteristic timet05 × 10-3 s
Characteristic lengthl00.5 nm
Coefficient of chemical free energyfv*1.651
fg*0.100
fb*-0.29
b0-0.08736[15]
b10.2663[15]
b20.2559[15]
b30.032
Solubility of vacancyCv00.012
Solubility of gas atomCg00.032
Gas gradient coefficientκg*0.05
Vacancy gradient coefficientκv*0.05
Elastic constantC11 in fcc iron154 GPa
C12 in fcc iron122 GPa
C44 in fcc iron77 GPa
C11 in fcc chrome249 GPa
C12 in fcc chrome178 GPa
C44 in fcc chrome143 GPa
Expansion coefficient of vacancyεvac0-0.05
Expansion coefficient of gas atomεgas00.05
Table 1  The dimensionless parameters used in the model
Fig.2  Concentration and stress field evolutions of vacancy and gas atoms during the cooperative nucleation and growth of cavity and bubble
(a1-a3) vacancy concentration (Cv) field distributions during growing up at 10t0 (a1), 2500t0 (a2), and 5000t0 (a3), respectively
(b1-b3) gas atom concentration (Cg) field distributions during growing up at 10t0 (b1), 2500t0 (b2), and 5000t0 (b3), respectively
(c1-c3) Cv and Cg along the cross section of the center line of the bubble at 10t0 (c1), 2500t0 (c2), and 5000t0 (c3), respectively
(d1-d3) stress field distributions of bubble at 10t0 for σxx (d1), σyy (d2), and σxy (d3), respectively (σxx, σyy —normal stresses, σxy —shear stress)
Fig.3  Evolutions of bubbles in Fe-0Cr (a1-a5), Fe-3Cr (b1-b5), Fe-7Cr (c1-c5), Fe-11Cr (d1-d5), and Fe-13Cr (e1-e5) alloys at 1400t0 (a1-e1), 1600t0 (a2-e2), 2000t0 (a3-e3), 5000t0 (a4-e4), and 10000t0 (a5-e5)
Fig.4  Vacancy migration energy (Evm) and vacancy diffusion coefficient (Dv) (a) and lattice constant (a) (b) in matrix with different Cr contents
Fig.5  Statistics of area fraction (a) and average radius (b) of bubble in Fe-Cr alloys with different Cr contents
Fig.6  Schematic of the dislocation dipole setup (a) and stress field distributions of the edge dislocation dipole for normal stresses σ11 (b1), σ22 (b2) of dislocation dipole, and shear stress σ12 (b3)
Fig.7  Evolutions of bubbles under dislocation stress field in Fe-0Cr and Fe-13Cr alloys
(a1-a5) Cg in Fe-0Cr alloy at 1200t0 (a1), 1500t0 (a2), 1950t0 (a3), 2250t0 (a4), and 3000t0 (a5), respectively
(b1-b5) Cg in Fe-13Cr alloy at 1200t0 (b1), 1500t0 (b2), 1950t0 (b3), 2250t0 (b4), and 3000t0 (b5), respectively
(c) area fraction of bubble under dislocation stress field
(d) average radius of bubble under dislocation stress field
1 Martin G, Garcia P, Sabathier C, et al. Irradiation-induced heterogeneous nucleation in uranium dioxide [J]. Phys. Lett., 2010, 374A: 3038
2 Gao J, Gaganidze E, Kaiser B, et al. Evolution mechanisms of irradiation-induced helium bubbles, C15 clusters and dislocation loops in ferrite/martensite steels: A cluster dynamics modeling study [J]. J. Nucl. Mater., 2021, 557: 153212
3 Garcia P, Martin G, Sabathier C, et al. Nucleation and growth of intragranular defect and insoluble atom clusters in nuclear oxide fuels [J]. Nucl. Instrum. Methods Phys. Res., 2012, 277B: 98
4 Liang L Y, Mei Z G, Soo Kim Y, et al. Three-dimensional phase-field simulations of intragranular gas bubble evolution in irradiated U-Mo fuel [J]. Comput. Mater. Sci., 2018, 145: 86
5 Wang J L, Liu D P, Dang W Q, et al. Segregation and coalescence behavior of helium bubbles in tungsten [J]. J. Nucl. Mater., 2021, 544: 152732
6 Millett P C, Tonks M R, Biner S B, et al. Phase-field simulation of intergranular bubble growth and percolation in bicrystals [J]. J. Nucl. Mater., 2012, 425: 130
7 Aagesen L K, Andersson D, Beeler B W, et al. Phase-field simulations of intergranular fission gas bubble behavior in U3Si2 nuclear fuel [J]. J. Nucl. Mater., 2020, 541: 152415
8 Aagesen L K, Schwen D, Tonks M R, et al. Phase-field modeling of fission gas bubble growth on grain boundaries and triple junctions in UO2 nuclear fuel [J]. Comput. Mater. Sci., 2019, 161: 35
9 Zhang C H, Chen K Q, Wang Y S, et al. Diffusion of helium and nucleation-growth of helium-bubbles in metallic materials [J]. Nucl. Phys. Rev., 2001, 18: 50
张崇宏, 陈克勤, 王引书 等. 金属材料中氦的扩散与氦泡的形核生长研究 [J]. 原子核物理评论, 2001, 18: 50
10 Wang J, Yu L M, Huang Y, et al. Effects of dislocation density, temperature and Cr concentration on helium behavior in α-Fe [J]. Comput. Mater. Sci., 2019, 160: 105
11 Yang Y C, Ding J H, Zhang H L, et al. Atomistic understanding of helium behaviors at grain boundaries in vanadium [J]. Comput. Mater. Sci., 2019, 158: 296
12 Hu S Y, Beeler B. Gas bubble evolution in polycrystalline UMo fuels under elastic-plastic deformation: A phase-field model with crystal-plasticity [J]. Front. Mater., 2021, 8: 682667
13 Barani T, Pastore G, Magni A, et al. Modeling intra-granular fission gas bubble evolution and coarsening in uranium dioxide during in-pile transients [J]. J. Nucl. Mater., 2020, 538: 152195
14 Xiao Z H, Wang Y F, Hu S Y, et al. A quantitative phase-field model of gas bubble evolution in UO2 [J]. Comput. Mater. Sci., 2020, 184: 109867
15 Wang Y F, Xiao Z H, Hu S Y, et al. A phase field study of the thermal migration of gas bubbles in UO2 nuclear fuel under temperature gradient [J]. Comput. Mater. Sci., 2020, 183: 109817
16 Li Y, Ma D C, Wang B. Influence of bulk free energy density on single void evolution based on the phase-field method [J]. Comput. Mater. Sci., 2019, 163: 100
17 Yang H, Feng Z H, Wang H R, et al. Phase-field modeling of irradiated void microstructure evolution of Fe-Cr alloy [J]. Acta Phys. Sin., 2021, 70: 054601
杨 辉, 冯泽华, 王贺然 等. Fe-Cr合金辐照空洞微结构演化的相场法模拟 [J]. 物理学报, 2021, 70: 054601
18 Chen W J, Zhou Y A, Wang S X, et al. Phase field study the effects of interfacial energy anisotropy on the thermal migration of voids [J]. Comput. Mater. Sci., 2019, 159: 177
19 Hu S Y, Henager C H, Heinisch H L, et al. Phase-field modeling of gas bubbles and thermal conductivity evolution in nuclear fuels [J]. J. Nucl. Mater., 2009, 392: 292
20 Morishita K, Sugano R. Mechanism map for nucleation and growth of helium bubbles in metals [J]. J. Nucl. Mater., 2006, 353: 52
21 Trinkaus H. Energetics and formation kinetics of helium bubbles in metals [J]. Radiation Effects, 1983, 78: 189
22 Hu S Y, Chen L Q. A phase-field model for evolving microstructures with strong elastic inhomogeneity [J]. Acta Mater., 2001, 49: 1879
23 Rodney D, Le Bouar Y, Finel A. Phase field methods and dislocations [J]. Acta Mater., 2003, 51: 17
24 Wang Y U, Jin Y M, Cuitiño A M, et al. Phase field microelasticity theory and modeling of multiple dislocation dynamics [J]. Appl. Phys. Lett., 2001, 78: 2324
25 Flynn C P. Atomic migration in monatomic crystals [J]. Phys. Rev., 1968, 171: 920
26 Millett P C, El-Azab A, Wolf D. Phase-field simulation of irradiated metals: Part II: Gas bubble kinetics [J]. Comput. Mater. Sci., 2011, 50: 960
27 Was G S. Fundamentals of Radiation Materials Science [M]. Berlin: Springer, 2007: 415
28 Konings R J M. Comprehensive Nuclear Materials [M]. Amsterdam: Elsevier Ltd., 2012: 140
29 Terentyev D, Juslin N, Nordlund K, et al. Fast three dimensional migration of He clusters in bcc Fe and Fe-Cr alloys [J]. J. Appl. Phys., 2009, 105: 103509
[1] BAI Juju, LI Jianjian, FU Chonglong, CHEN Shuangjian, LI Zhijun, LIN Jun. Effect of He Ion Irradiation on the GH3535 Weld Metal at High Temperature[J]. 金属学报, 2024, 60(3): 299-310.
[2] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] LIU Wei, CHEN Wanqi, MA Menghan, LI Kailun. Review of Irradiation Damage Behavior of Tungsten Exposed to Plasma in Nuclear Fusion[J]. 金属学报, 2023, 59(8): 986-1000.
[4] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[5] ZHOU Xiaobin, ZHAO Zhanshan, WANG Wanxing, XU Jianguo, YUE Qiang. Physical and Mathematical Simulation on the Bubble Entrainment Behavior at Slag-Metal Interface[J]. 金属学报, 2023, 59(11): 1523-1532.
[6] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[7] ZHU Xiaohui, LIU Xiangbing, WANG Runzhong, LI Yuanfei, LIU Wenqing. Effects of Ar Ion Irradiation on Microstructure of Fe-Cu Alloys at 290oC[J]. 金属学报, 2022, 58(7): 905-910.
[8] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[9] ZHANG Jinyu, QU Qimeng, WANG Yaqiang, WU Kai, LIU Gang, SUN Jun. Research Progress on Irradiation Effects and Mechanical Properties of Metal/High-Entropy Alloy Nanostructured Multilayers[J]. 金属学报, 2022, 58(11): 1371-1384.
[10] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
[11] SUN Zhengyang, YANG Chao, LIU Wenbo. Phase Field Simulations of the Sintering Process of UO2[J]. 金属学报, 2020, 56(9): 1295-1303.
[12] SUN Jia, LI Xuexiong, ZHANG Jinhu, WANG Gang, YANG Mei, WANG Hao, XU Dongsheng. Phase Field Modeling of Formation Mechanism of Grain Boundary Allotriomorph in βα Phase Transformation in Ti-6Al-4V Alloy[J]. 金属学报, 2020, 56(8): 1113-1122.
[13] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[14] SUN Zhengyang, WANG Yutian, LIU Wenbo. Phase-Field Simulation of the Interaction Between Pore and Grain Boundary[J]. 金属学报, 2020, 56(12): 1643-1653.
[15] Yucheng WU. Research Progress in Irradiation Damage Behavior of Tungsten and Its Alloys for Nuclear Fusion Reactor[J]. 金属学报, 2019, 55(8): 939-950.
No Suggested Reading articles found!