Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (1): 66-82    DOI: 10.11900/0412.1961.2019.00187
Overview Current Issue | Archive | Adv Search |
Research Progress on Fundamentals and Applications of Metal-Induced Crystallization
WANG Zumin1(),ZHANG An1,CHEN Yuanyuan1,HUANG Yuan1,WANG Jiangyong2
1. School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
2. Department of Physics, Shantou University, Shantou 515063, China
Cite this article: 

WANG Zumin,ZHANG An,CHEN Yuanyuan,HUANG Yuan,WANG Jiangyong. Research Progress on Fundamentals and Applications of Metal-Induced Crystallization. Acta Metall Sin, 2020, 56(1): 66-82.

Download:  HTML  PDF(16411KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

By contacting amorphous semiconductors with metals, amorphous semiconductors can be induced to transform into crystalline semiconductors at extremely low temperatures, a phenomenon known as metal-induced crystallization (MIC). Thin-film crystalline semiconductor is one of the key materials in many advanced technologies, and is widely used in the fields of microelectronics, optoelectronics, display technology and photovoltaic technology. MIC provides a new route for the production of crystalline semiconductor thin-films devices at low temperature, for fabrication of nanoporous metal materials and for interface engineering of metallic materials, and has therefore attracted wide interests from both academic and industrial communities. This paper reviews the current research progress of metal-induced crystallization of amorphous semiconductors at low temperatures, and the MIC behaviors in different metal/amorphous semiconductor systems are also classified and summarized. The thermodynamics and kinetics of MIC were calculated and analyzed in detail, highlighting the role of interface thermodynamics in the solid-solid phase transformation of thin-film systems. On this basis, the underlying mechanism of MIC has been elucidated. Finally, the future research trends of MIC are prospected.

Key words:  metal-induced crystallization      interface thermodynamics      metal/semiconductor system      solid-phase reaction      convective transportation     
Received:  06 June 2019     
ZTFLH:  TG111.5  
Fund: National Natural Science Foundation of China(51571148);National Key Research and Deve-lopment Program of China(2017YFE0302600)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00187     OR     https://www.ams.org.cn/EN/Y2020/V56/I1/66

Fig.1  Schematic illustration of the wetting of a metal grain boundary (GB) by an amorphous semiconductor material (a)[30], energetics for wetting of high-angle <Al> grain boundaries by a-Ge and a-Si (b), and energetics for wetting of high-angle <Ag> and <Au> grain boundaries by a-Si (c)[27] (γ?M?GB represents the GB energies of metal <M> high-angle GBs, γ?M?{S} represents the interface energies between <M> and amorphous semiconductor {S}, a-Si means amorphous Si)
Fig.2  In situ heating valence energy-filtered TEM observations of wetting of an Al GB by a-Si of 100-nm c-Al/150-nm a-Si bilayer during annealing (c-Al means crystalline-Al)[33](a) bright-field TEM image of the cross section, and mappings of plasmon-loss peak energy and full width at half maximum (FWHM) of the bilayer specimen upon in situ annealing at 110 ℃ for 15 min(b~d) mappings of the plasmon-loss peak energy and FWHM of the bilayer specimen upon annealing at 120, 130 and 140 ℃, respectively
Fig.3  Schematic illustration of the two types of sites for low-temperature nucleation of crystallization of amorphous semiconductors (a), energetics of the nucleation of crystalline Ge (or Si) at the Al GBs and at the c-Al/a-Ge (or c-Al/a-Si) interface (b), and energetics of the nucleation of crystalline Si at Ag GBs and Au GBs and at the c-Ag/a-Si and the c-Au/a-Si interfaces (c)[27]
Fig.4  In situ heating HRTEM observations (cross-sectional views) of the nucleation of crystalline Si at a high-angle Al GB at 150 ℃, in a 100-nm c-Al/150-nm a-Si bilayer (d—lattice spacing)[33](a) before nucleation of c-Si (0 s)(b, c) initial nucleation and growth of Si crystal nucleus at the Al GB (120 s and 210 s at 150 ℃), respectively
Fig.5  In situ XRD observations of the crystallization behavior differences between a-Ge (a) and a-Si (b) during metal induced crystallization (MIC)[27]
Fig.6  Calculated interface energies (γ') (a), bulk crystallization energies (ΔG) (b) and critical thicknesses for nucleation of crystallization (hin?GBcrit,?hinterfcrit) (c) of amorphous SiGe at the <Al>|{SiGe} interface and at the <Al> GBs, schematic illustration of crystallization processes at a temperature below (panel I) or above (panel II) the critical temperature (about 320 ℃) for nucleation of <SiGe> at the <Al>|{SiGe} interface (d), and XRD spectra of the c-Al/a-SiGe samples as-deposited and annealed at different temperatures from 250 ℃ to 400 ℃ (e)[55]
Fig.7  Energetics of the continued wetting after completing the initial nucleation of crystalline Si or crystalline Ge at the Al GBs (a), and energetics for continued lateral grain growth of c-Ge and c-Si in the original Al layer (perpendicular to the original Al GBs) (b) (hcrit represents the critical thickness of the amorphous semiconductor)[27]
Fig.8  In situ valence energy-filtered TEM observations of the lateral growth of a c-Si grain nucleated at the c-Al bottom layer during heating of a 150-nm a-Si/100-nm c-Al bilayer at 220 ℃ (a) and 240 ℃ (b), respectively, and upon heating at 280 ℃, Al and Si sublayers have exchanged their locations: a layer exchange has occurred (c)[34]
Fig.9  Electron back-scattered diffraction (EBSD) images of the Ge layer in the normal direction (ND) (a) and transverse direction (TD) (b) with respect to the sample surface, and distribution of the grain size of the sample calculated from the EBSD analysis (c)[110]
Fig.10  Schematic illustration of the steps for the vapor-grain-boundary-solid (VGBS) growth process of (semiconductor) nanowire networks (NanoNets) (Dnw—wire width)[38]
[1] Oki F, Ogawa Y, Fujiki Y. Effect of deposited metals on the crystallization temperature of amorphous germanium film [J]. Jpn. J. Appl. Phys., 1969, 8: 1056
[2] Bosnell J R, Voisey U C. The influence of contact materials on the conduction crystallization temperature and electrical properties of amorphous germanium, silicon and boron films [J]. Thin Solid Films, 1970, 6: 161
[3] Herd S R, Chaudhari P, Brodsky M H. Metal contact induced crystallization in films of amorphous silicon and germanium [J]. J. Non-Cryst. Solids, 1972, 7: 309
[4] Ottaviani G, Sigurd D, Marrello V, et al. Crystal growth of silicon and germanium in metal films [J]. Science, 1973, 180: 948
[5] Sigurd D, Ottaviani G, Arnal H J, et al. Crystallization of Ge and Si in metal films. II [J]. J. Appl. Phys., 1974, 45: 1740
[6] Brodsky M H, Turnbull D. Low temperature eutectic induced crystallization of amorphous materials [A]. AMER Inst Physics Circulation Fulfillment Div, 500 Sunnyside Blvd, Woodbury [C]. 1971, 16(3): 304
[7] Konno T J, Sinclair R. Crystallization of silicon in aluminium/amorphous-silicon multilayers [J]. Philos. Mag., 1992, 66B: 749
[8] Sinclair R, Konno T J. In situ HREM: Application to metal-mediated crystallization [J]. Ultramicroscopy, 1994, 56: 225
[9] Konno T J, Sinclair R. Metal-mediated crystallization of amorphous silicon in silicon-silver layered systems [J]. Philos. Mag., 1995, 71B: 163
[10] Konno T J, Sinclair R. Metal-contact-induced crystallization of semiconductors [J]. Mater. Sci. Eng., 1994, A179-180: 426
[11] Sinclair R, Morgiel J, Kirtikar A S, et al. Direct observation of crystallization in silicon by in situ high-resolution electron microscopy [J]. Ultramicroscopy, 1993, 51: 41
[12] Nast O, Puzzer T, Koschier L M, et al. Aluminum-induced crystallization of amorphous silicon on glass substrates above and below the eutectic temperature [J]. Appl. Phys. Lett., 1998, 73: 3214
[13] Nast O, Hartmann A J. Influence of interface and Al structure on layer exchange during aluminum-induced crystallization of amorphous silicon [J]. J. Appl. Phys., 2000, 88: 716
[14] Nast O, Wenham S R. Elucidation of the layer exchange mechanism in the formation of polycrystalline silicon by aluminum-induced crystallization [J]. J. Appl. Phys., 2000, 88: 124
[15] Lee S W, Jeon Y C, Joo S K. Pd induced lateral crystallization of amorphous Si thin films [J]. Appl. Phys. Lett., 1995, 66: 1671
[16] Lee S W, Joo S K. Low temperature poly-Si thin-film transistor fabrication by metal-induced lateral crystallization [J]. IEEE Electron Device Lett., 1996, 17: 160
[17] Jin Z H, Bhat G A, Yeung M, et al. Nickel induced crystallization of amorphous silicon thin films [J]. J. Appl. Phys., 1998, 84: 194
[18] Wang J Y, Zalar A, Zhao Y H, et al. Determination of the interdiffusion coefficient for Si/Al multilayers by Auger electron spectroscopical sputter depth profiling [J]. Thin Solid Films, 2003, 433: 92
[19] Zhao Y H, Wang J Y, Mittemeijer E J. Microstructural changes in amorphous Si/crystalline Al thin bilayer films upon annealing [J]. Appl. Phys., 2004, 79A: 681
[20] Wang J Y, Mittemeijer E J. A new method for the determination of the diffusion-induced concentration profile and the interdiffusion coefficient for thin film systems by Auger electron spectroscopical sputter depth profiling [J]. J. Mater. Res., 2004, 19: 3389
[21] He D, Wang J Y, Mittemeijer E J. The initial stage of the reaction between amorphous silicon and crystalline aluminum [J]. J. Appl. Phys., 2005, 97: 093524
[22] He D, Wang J Y, Mittemeijer E J. Reaction between amorphous Si and crystalline Al in Al/Si and Si/Al bilayers: Microstructural and thermodynamic analysis of layer exchange [J]. Appl. Phys., 2005, 80A: 501
[23] Wang J Y, He D, Zhao Y H, et al. Wetting and crystallization at grain boundaries: Origin of aluminum-induced crystallization of amorphous silicon [J]. Appl. Phys. Lett., 2006, 88: 061910
[24] Wang Z M, Wang J Y, Jeurgens L P H, et al. "Explosive" crystallisation of amorphous germanium in Ge/Al layer systems; Comparison with Si/Al layer systems [J]. Scr. Mater., 2006, 55: 987
[25] Wang J Y, Wang Z M, Mittemeijer E J. Mechanism of aluminum-induced layer exchange upon low-temperature annealing of amorphous Si/polycrystalline Al bilayers [J]. J. Appl. Phys., 2007, 102: 113523
[26] Wang Z M, Wang J Y, Jeurgens L P H, et al. Tailoring the ultrathin Al-induced crystallization temperature of amorphous Si by application of interface thermodynamics [J]. Phys. Rev. Lett., 2008, 100: 125503
[27] Wang Z M, Wang J Y, Jeurgens L P H, et al. Thermodynamics and mechanism of metal-induced crystallization in immiscible alloy systems: Experiments and calculations on Al/a-Ge and Al/a-Si bilayers [J]. Phys. Rev., 2008, 77B: 045424
[28] Wang Z M, Wang J Y, Jeurgens L P H, et al. Investigation of metal-induced crystallization in amorphous Ge/crystalline Al bilayers by Auger microanalysis and selected-area depth profiling [J]. Surf. Interface Anal., 2008, 40: 427
[29] Wang Z M, Wang J Y, Jeurgens L P H, et al. Origins of stress development during metal-induced crystallization and layer exchange: Annealing amorphous Ge/crystalline Al bilayers [J]. Acta Mater., 2008, 56: 5047
[30] Wang Z M, Jeurgens L P H, Wang J Y, et al. Fundamentals of metal-induced crystallization of amorphous semiconductors [J]. Adv. Eng. Mater., 2009, 11: 131
[31] Wang Z M, Jeurgens L P H, Wang J Y, et al. High-resolution transmission-electron-microscopy study of ultrathin Al-induced crystallization of amorphous Si [J]. J. Mater. Res., 2009, 24: 3294
[32] Wang Z M, Gu L, Jeurgens L P H, et al. Thermal stability of Al/nanocrystalline-Si bilayers investigated by in situ heating energy-filtered transmission electron microscopy [J]. J. Mater. Sci., 2011, 46: 4314
[33] Wang Z M, Gu L, Phillipp F, et al. Metal-catalyzed growth of semiconductor nanostructures without solubility and diffusivity constraints [J]. Adv. Mater., 2011, 23: 854
[34] Wang Z M, Gu L, Jeurgens L P H, et al. Real-time visualization of convective transportation of solid materials at nanoscale [J]. Nano Lett., 2012, 12: 6126
[35] Gordon I, Carnel L, Van Gestel D, et al. Fabrication and characterization of highly efficient thin-film polycrystalline-silicon solar cells based on aluminium-induced crystallization [J]. Thin Solid Films, 2008, 516: 6984
[36] Kim H Y, Seok K H, Chae H J, et al. Effect of nickel silicide gettering on metal-induced crystallized polycrystalline-silicon thin-film transistors [J]. Solid-State Electron., 2017, 132: 73
[37] Gordon I, Carnel L, Van Gestel D, et al. 8% efficient thin‐film polycrystalline-silicon solar cells based on aluminum-induced crystallization and thermal CVD [J]. Prog. Photovoltaics: Res. Appl., 2007, 15: 575
[38] Wang Z M, Mittemeijer E J. Vapor-defect-solid growth mechanism for NanoNets utilizing natural defect networks in polycrystals [J]. Mater. Des., 2018, 150: 206
[39] Hayzelden C, Batstone J L, Cammarata R C. In situ transmission electron microscopy studies of silicide-mediated crystallization of amorphous silicon [J]. Appl. Phys. Lett., 1992, 60: 225
[40] Hayzelden C, Batstone J L. Silicide formation and silicide-mediated crystallization of nickel-implanted amorphous silicon thin films [J]. J. Appl. Phys., 1993, 73: 8279
[41] Yoon S Y, Park S J, Kim K H, et al. Metal-induced crystallization of amorphous silicon [J]. Thin Solid Films, 2001, 383: 34
[42] Cottrell T L. The Strengths of Chemical Bonds [M]. 2nd Ed., London: Butterworth, 1958: 1
[43] Hiraki A, Nicolet M A, Mayer J W. Low-temperature migration of silicon in thin layers of gold and platinum [J]. Appl. Phys. Lett., 1971, 18: 178
[44] Hiraki A, Shuto K, Kim S, et al. Room-temperature interfacial reaction in Au-semiconductor systems [J]. Appl. Phys. Lett., 1977, 31: 611
[45] Hiraki A. Low temperature reactions at Si/metal interfaces; What is going on at the interfaces? [J]. Surf. Sci. Rep., 1983, 3: 357
[46] Hiraki A. A model on the mechanism of room temperature interfacial intermixing reaction in various metal-semiconductor couples: What triggers the reaction? [J]. J. Electrochem. Soc., 1980, 127: 2662
[47] Okuno K, Ito T, Iwami M, et al. Presence of critical Au-film thickness for room temperature interfacial reaction between Au(Film) and Si(Crystal substrate) [J]. Solid State Commun., 1980, 34: 493
[48] Mehrer H. Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes [M]. Berlin, Heidelberg: Springer, 2007: 1
[49] Egerton R F. Electron Energy-Loss Spectroscopy in the Electron Microscope [M]. 3rd Ed., Boston, MA: Springer, 2011: 1
[50] Jeurgens L P H, Wang Z M, Mittemeijer E J. Thermodynamics of reactions and phase transformations at interfaces and surfaces [J]. Int. J. Mater. Res., 2009, 100: 1281
[51] Slater J C. Atomic radii in crystals [J]. J. Chem. Phys., 1964, 41: 3199
[52] Li B Q, Zheng B, Zhang S Y, et al. Dependence of fractal formation on the thickness ratio in Al/a-Ge bilayers [J]. Phys. Rev., 1993, 47B: 3638
[53] Katsuki F, Hanafusa K, Yonemura M, et al. Crystallization of amorphous germanium in an Al/a-Ge bilayer film deposited on a SiO2 substrate [J]. J. Appl. Phys., 2001, 89: 4643
[54] Seibt M, Buschbaum S, Gnauert U, et al. Nanoscale observation of a grain boundary related growth mode in thin film reactions [J]. Phys. Rev. Lett., 1998, 80: 774
[55] Zhang T W, Ma F, Zhang W L, et al. Diffusion-controlled formation mechanism of dual-phase structure during Al induced crystallization of SiGe [J]. Appl. Phys. Lett., 2012, 100: 071908
[56] Hu S, McIntyre P C. Nucleation and growth kinetics during metal-induced layer exchange crystallization of Ge thin films at low temperatures [J]. J. Appl. Phys., 2012, 111: 044908
[57] Hu S, Marshall A F, McIntyre P C. Interface-controlled layer exchange in metal-induced crystallization of germanium thin films [J]. Appl. Phys. Lett., 2010, 97: 082104
[58] Gardelis S, Nassiopoulou A G, Manousiadis P, et al. A silicon-wafer based p-n junction solar cell by aluminum-induced recrystallization and doping [J]. Appl. Phys. Lett., 2013, 103: 241114
[59] Scholz M, Gjukic M, Stutzmann M. Silver-induced layer exchange for the low-temperature preparation of intrinsic polycrystalline silicon films [J]. Appl. Phys. Lett., 2009, 94: 012108
[60] Park J H, Kurosawa M, Kawabata N, et al. Au-induced low-temperature (~250 ℃) crystallization of Si on insulator through layer-exchange process [J]. Electrochem. Solid-State Lett., 2011, 14: H232
[61] Tai L X, Zhu D M, Liu X, et al. Direct growth of graphene on silicon by metal-free chemical vapor deposition [J]. Nano-Micro Lett., 2018, 10: 20
[62] Gordon I, Van Gestel D, Qiu Y, et al. Processing and characterization of efficient thin-film polycrystalline silicon solar cells [A]. Proceedings of 2008 33rd IEEE Photovoltaic Specialists Conference [C]. San Diego, CA, USA: IEEE, 2008: 1
[63] ? Tüzün, Slaoui A, Gordon I, et al. N-type polycrystalline silicon films formed on alumina by aluminium induced crystallization and overdoping [J]. Thin Solid Films, 2008, 516: 6892
[64] ? Tüzün, Qiu Y, Slaoui A, et al. Properties of n-type polycrystalline silicon solar cells formed by aluminium induced crystallization and CVD thickening [J]. Sol. Energy Mater. Sol. Cells, 2010, 94: 1869
[65] Gall S, Becker C, Lee K Y, et al. Polycrystalline silicon thin-film solar cells on ZnO:Al-coated glass substrates [A]. Proceedings of 2009 34th IEEE Photovoltaic Specialists Conference [C]. Philadelphia, PA: IEEE, 2009: 197
[66] Aberle A G, Straub A, Widenborg P I, et al. Polycrystalline silicon thin-film solar cells on glass by aluminium‐induced crystallisation and subsequent ion‐assisted deposition (ALICIA) [J]. Prog. Photovoltaics: Res. Appl., 2005, 13: 37
[67] Van Gestel D, Gordon I, Poortmans J. Metal induced crystallization of amorphous silicon for photovoltaic solar cells [J]. Phys. Procedia, 2011, 11: 196
[68] Prathap P, Tuzun O, Madi D, et al. Thin film silicon solar cells by AIC on foreign substrates [J]. Sol. Energy Mater. Sol. Cells, 2011, 95: S44
[69] Toko K, Numata R, Saitoh N, et al. Selective formation of large-grained, (100)- or (111)-oriented Si on glass by Al-induced layer exchange [J]. J. Appl. Phys., 2014, 115: 094301
[70] Numata R, Toko K, Saitoh N, et al. Orientation control of large-grained Si films on insulators by thickness-modulated Al-induced crystallization [J]. Cryst. Growth Des., 2013, 13: 1767
[71] Van Gestel D, Gordon I, Poortmans J. Aluminum-induced crystallization for thin-film polycrystalline silicon solar cells: Achievements and perspective [J]. Sol. Energy Mater. Sol. Cells, 2013, 119: 261
[72] Shekoofa O, Wang J, Li D J, et al. Nano-crystalline thin films fabricated by Si-Al co-sputtering and metal induced crystallization for photovoltaic applications [J]. Sol. Energy, 2018, 173: 539
[73] Shekoofa O, Wang J, Li D J, et al. P-silicon thin film fabricated by magnetron sputtering and aluminium induced crystallization for Schottky silicon solar cells [J]. Mater. Sci. Semicond. Process., 2017, 71: 366
[74] Hamasha E, Masadeh G, Shariah A, et al. Aluminum induced crystallization of amorphous silicon thin films with assistance of electric field for solar photovoltaic applications [J]. Sol. Energy, 2016, 127: 223
[75] Hamasha K, Hamasha E, Masadeh G, et al. Aluminum-induced crystallization of hydrogenated amorphous silicon thin films with assistance of electric field for solar photovoltaic applications [J]. J. Disp. Technol., 2016, 12: 82
[76] Shekoofa O, Wang J, Luo Y, et al. Impacts of the annealing profile on AIC thin film solar cell characteristics fabricated by magnetron sputtering [A]. Proceedings of the 33rd International Conference on the Physics of Semiconductors [C]. Beijing: IOP Publishing, 2017: 012006
[77] Toko K, Nakata M, Okada A, et al. Influence of substrate on crystal orientation of large-grained Si thin films formed by metal-induced crystallization [J]. Int. J. Photoenergy, 2015, 2015: 790242
[78] Bhopal M F, Lee D W, Lee S H. Poly-crystalline thin-film by aluminum induced crystallization on aluminum nitride substrate [J]. Electron. Mater. Lett., 2016, 12: 651
[79] Karaman M, Tüzün ?zmen ?, Sedani S H, et al. Effects of glass substrate coated by different-content buffer layer on the quality of poly‐Si thin films [J]. Phys. Status Solidi, 2016, 213A: 3142
[80] Hainey Jr M F, Innocent-Dolor J L, Choudhury T H, et al. Controlling silicon crystallization in aluminum-induced crystallization via substrate plasma treatment [J]. J. Appl. Phys., 2017, 121: 115301
[81] Sanford J L, Libsch F R. 4.2: TFT AMOLED pixel circuits and driving methods [J]. SID Symp. Dig. Tech. Pap.,2003, 34: 10
[82] Lee J H, You B H, Han C W, et al. P-2: A new a-Si:H TFT pixel circuit suppressing OLED current error caused by the hysteresis and threshold voltage shift for active matrix organic light emitting diode [J]. SID Symp. Dig. Tech. Pap., 2005, 36: 228
[83] Hasumi T, Takasugi S, Kanoh K, et al. 46.2: New OLED pixel circuit and driving method to suppress threshold voltage shift of a-Si:H TFT [J]. SID Symp. Dig. Tech. Pap., 2006, 37: 1547
[84] Yeh S H, Sun W T, Yu J S, et al. P-173L: Late-news poster: A 2.2-inch QVGA system-on-glass LCD using P-type low temperature poly-silicon thin film transistors [J]. SID Symp. Dig. Tech. Pap., 2005, 36: 352
[85] Chang Y J, Kim Y L, Shim S H, et al. 28.3: World's largest (21.3 in.) UXGA non-laser LTPS AMLCD [J]. SID Symp. Dig. Tech. Pap., 2006, 37: 1276
[86] Lee S W, Ihn T H, Joo S K. Fabrication of high-mobility p-channel poly-Si thin film transistors by self-aligned metal-induced lateral crystallization [J]. IEEE Electron Device Lett., 1996, 17: 407
[87] Meng Z G, Wang M X, Wong M. High performance low temperature metal-induced unilaterally crystallized polycrystalline silicon thin film transistors for system-on-panel applications [J]. IEEE Trans. Electron Devices, 2000, 47: 404
[88] Cammarata R C, Thompson C V, Hayzelden C, et al. Silicide precipitation and silicon crystallization in nickel implanted amorphous silicon thin films [J]. J. Mater. Res., 1990, 5: 2133
[89] Meng Z G, Chen H Y, Qiu C F, et al. 24.3: Active‐matrix organic light-emitting diode display implemented using metal-induced unilaterally crystallized polycrystalline silicon thin-film transistors [J]. SID Symp. Dig. Tech. Pap., 2001, 32: 380
[90] Zhao S Y, Meng Z G, Wong M, et al. Metal-induced continuous zonal domain (CZD) polycrystalline silicon thin-film transistors and its application on field sequential color liquid crystal display [J]. J. Disp. Technol., 2010, 6: 135
[91] Meng Z G, Li C, Kwok H S, et al. Application of re-crystallized metal‐induced unilaterally crystallized polycrystalline-silicon thin-film-transistor technology to reflective liquid-crystaldisplay [J]. J. Soc. Inf. Disp., 2001, 9: 319
[92] Kim S H, Lee S H, Park W H, et al. 48.3: A 2 inch LTPS AMOLED with an embedded lateral p-i-n photodiode sensors [J]. SID Symp. Dig. Tech. Pap., 2008, 39: 724
[93] Chen Y H, Yen L C, Chang T S, et al. Low-temperature polycrystalline-silicon tunneling thin-film transistors with MILC [J]. IEEE Electron Device Lett., 2013, 34: 1017
[94] Ma W C Y, Hsu H S, Fang C C, et al. Impacts of channel film thickness on poly-Si tunnel thin-film transistors [J]. Thin Solid Films, 2018, 660: 926
[95] Nakata M, Toko K, Saitoh N, et al. Orientation control of intermediate-composition SiGe on insulator by low-temperature Al-induced crystallization [J]. Scr. Mater., 2016, 122: 86
[96] Matsumura R, Wang Y F, Jevasuwan W, et al. Single grain growth of Si thin film on insulating substrate by limited region aluminum induced crystallization [J]. Mater. Lett., 2019, 252: 100
[97] Park J H, Seok K H, Kiaee Z, et al. Thermal stress effects on the electrical properties of p-channel polycrystalline-silicon thin-film transistors fabricated via metal-induced lateral crystallization [J]. IEEE Trans. Semicond. Manuf., 2015, 28: 35
[98] Park J H, Han J S, Joo S K. Electrical properties of metal-induced laterally crystallized p-type LTPS-TFT with high-κ ZrTiO4 gate dielectric featuring low equivalent-oxide-thickness [J]. IEEE Trans. Electron Devices, 2016, 63: 2391
[99] Shamim M Z, Persheyev S K, Rose M J. Electron field emission display based on AIC-PECVD thin silicon films [A]. Proceedings of 2016 10th International Conference on Intelligent Systems and Control [C]. Coimbatore, India: IEEE, 2016: 1
[100] Ohkubo S, Ide T, Okada M. Basic study of write-once media for blue-violet laser [J]. Tech. Dig. Opt. Data Storage, 2001: 34
[101] Lee J B, Lee C J, Choi D K. Influences of various metal elements on field aided lateral crystallization of amorphous silicon films [J]. Jpn. J. Appl. Phys., 2001, 40: 6177
[102] Inoue H, Mishima K, Aoshima M, et al. Inorganic write-once disc for high speed recording [J]. Jpn. J. Appl. Phys., 2003, 42: 1059
[103] Her Y C, Wu C L. Feasibility of Cu/a-Si bilayer for high data-transfer-rate write-once blue-ray recording [J]. Jpn. J. Appl. Phys., 2004, 43: 1013
[104] Germain P, Squelard S, Bourgoin J, et al. Crystallization kinetics of amorphous germanium [J]. J. Appl. Phys., 1977, 48: 1909
[105] Wu T H, Kuo P C, Fang Y H, et al. Microstructure and recording mechanism of Ge/Au bilayer media for write-once optical disc [J]. Appl. Phys. Lett., 2007, 90: 151111
[106] Her Y C, Chen J H, Tsai M H, et al. Nickel-induced crystallization of amorphous Ge film for blue-ray recording under thermal annealing and pulsed laser irradiation [J]. J. Appl. Phys., 2009, 106: 023530
[107] Her Y C, Tu W T, Tsai M H. Phase transformation and crystallization kinetics of a-Ge/Cu bilayer for blue-ray recording under thermal annealing and pulsed laser irradiation [J]. J. Appl. Phys., 2012, 111: 043503
[108] Nakata M, Toko K, Jevasuwan W, et al. Transfer-free synthesis of highly ordered Ge nanowire arrays on glass substrates [J]. Appl. Phys. Lett., 2015, 107: 133102
[109] Toko K, Nakata M, Jevasuwan W, et al. Vertically aligned Ge nanowires on flexible plastic films synthesized by (111)-oriented Ge seeded vapor-liquid-solid growth [J]. ACS Appl. Mater. Interfaces, 2015, 7: 18120
[110] Toko K, Nakazawa K, Saitoh N, et al. Double-layered Ge thin films on insulators formed by an Al-induced layer-exchange process [J]. Cryst. Growth Des., 2013, 13: 3908
[111] Zhu C B, Usiskin R E, Yu Y, et al. The nanoscale circuitry of battery electrodes [J]. Science, 2017, 358: eaao2808
[112] Striemer C C, Gaborski T R, McGrath J L, et al. Charge- and size-based separation of macromolecules using ultrathin silicon membranes [J]. Nature, 2007, 445: 749
[113] Cheng X Q, Wang Z X, Jiang X, et al. Towards sustainable ultrafast molecular-separation membranes: From conventional polymers to emerging materials [J]. Prog. Mater. Sci., 2018, 92: 258
[114] Serre P, Ternon C, Stambouli V, et al. Fabrication of silicon nanowire networks for biological sensing [J]. Sens. Actuators, 2013, 182B: 390
[115] Tian B Z, Liu J, Dvir T, et al. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues [J]. Nat. Mater., 2012, 11: 986
[116] Chen Y Y, Hu Z P, Xu Y F, et al. Microstructure evolution and interface structure of Al-40 wt% Si composites produced by high-energy ball milling [J]. J. Mater. Sci. Technol., 2019, 35: 512
[117] Ding Y, Zhang Z H. Nanoporous Metals for Advanced Energy Technologies [M]. Cham: Springer, 2016: 1
[118] Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors? [J]. Chem. Rev., 2004, 104: 4245
[119] Peng Z Q, Freunberger S A, Chen Y H, et al. A reversible and higher-rate Li-O2 battery [J]. Science, 2012, 337: 563
[120] Lang X Y, Hirata A, Fujita T, et al. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors [J]. Nat. Nanotechnol., 2011, 6: 232
[121] Kramer D, Viswanath R N, Weissmüller J. Surface-stress induced macroscopic bending of nanoporous gold cantilevers [J]. Nano Lett., 2004, 4: 793
[122] Viswanath R N, Kramer D, Weissmüller J. Adsorbate effects on the surface stress-charge response of platinum electrodes [J]. Electrochim. Acta, 2008, 53: 2757
[123] Detsi E, Onck P, De Hosson J T M. Metallic muscles at work: High rate actuation in nanoporous gold/polyaniline composites [J]. ACS Nano, 2013, 7: 4299
[124] Liu Z, Searson P C. Single nanoporous gold nanowire sensors [J]. J. Phys. Chem., 2006, 110B: 4318
[125] Liu Z N, Du J G, Qiu C C, et al. Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold [J]. Electrochem. Commun., 2009, 11: 1365
[126] Feng R, Zhang Y, Yu H Q, et al. Nanoporous PtCo-based ultrasensitive enzyme-free immunosensor for zeranoldetection [J]. Biosens. Bioelectron., 2013, 42: 367
[127] Cai J, Xu J, Wang J M, et al. Fabrication of three-dimensional nanoporous nickel films with tunable nanoporosity and their excellent electrocatalytic activities for hydrogen evolution reaction [J]. Int. J. Hydrogen Energy, 2013, 38: 934
[128] Liu T, Xie L, Li Y Q, et al. Hydrogen/deuterium storage properties of Pd nanoparticles [J]. J. Power Sources, 2013, 237: 74
[129] Garcia-Gradilla V, Sattayasamitsathit S, Soto F, et al. Ultrasound-propelled nanoporous gold wire for efficient drug loading and release [J]. Small, 2014, 10: 4154
[130] Chapman C A R, Chen H, Stamou M, et al. Nanoporous gold as a neural interface coating: Effects of topography, surface chemistry, and feature size [J]. ACS Appl. Mater. Interfaces, 2015, 7: 7093
[131] Zhang A, Wang J Y, Schützendübe P, et al. Beyond dealloying: Development of nanoporous gold via metal-induced crystallization and its electrochemical properties [J]. Nanotechnology, 2019, 30: 375601, doi: 10.1088/1361-6528/ab2616
[132] Ad?i? R R, Markovi? N M. Structural effects in electrocatalysis: Oxygen and hydrogen peroxide reduction on single crystal gold electrodes and the effects of lead ad-atoms [J]. J. Electroanal. Chem. Interfacial Electrochem., 1982, 138: 443
[133] Wan L P, Qin Y, Xiang J. Rapid electrochemical fabrication of porous gold nanoparticles for high-performance electrocatalysis towards oxygen reduction [J]. Electrochim. Acta, 2017, 238: 220
[134] Lu L F, Zou S H, Zhou Y H, et al. Ligand-regulated ORR activity of Au nanoparticles in alkaline medium: The importance of surface coverage of ligands [J]. Catal. Sci. Technol., 2018, 8: 746
[1] WU Ping; JIANG Enyong; WANG Cunda; BAI Haiti; WANG Heying; LIU Yuguang(Tiajin University; Tianjin 300072). SOLID-PHASE REACTION AND MAGNETISM IN ANNEALED [CO/Cu] MULTILAYERS[J]. 金属学报, 1997, 33(6): 631-637.
No Suggested Reading articles found!