Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (2): 129-136    DOI: 10.3724/SP.J.1037.2012.00514
Current Issue | Archive | Adv Search |
INVESTIGATION OF THE MICROSTRUCTURE AND IMPACT PROPERTIES OF THE HIGH NITROGEN STAINLESS STEEL WELD
LI Dongjie, LU Shanping, LI Dianzhong, LI Yiyi
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

LI Dongjie, LU Shanping, LI Dianzhong, LI Yiyi. INVESTIGATION OF THE MICROSTRUCTURE AND IMPACT PROPERTIES OF THE HIGH NITROGEN STAINLESS STEEL WELD. Acta Metall Sin, 2013, 49(2): 129-136.

Download:  PDF(3997KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The high nitrogen stainless steel (HNS) is widespread attention in recent years because of the high strength, good toughness and corrosion resistance. Weld ability and welding efficiency are received extensive attention in the HNS welding. Using the double shielded TIG welding method, the active element, oxygen, was transferred into weld pool so as to change the convection of the liquid metal from outward to inward. This proposed welding process could effectively reduce the width of the pool surface, which is beneficial to reducing the overflow of nitrogen content in the weld. The influence of heat input (different welding current) on the weld pool shape and the impact properties of welds were investigated. The weld penetration increased with the increasing heat input and the 10 mm thick work piece was welded thoroughly under the 250 A welding current. The XRD test and calculation results showed that the δ ferrite content in the welds was increased with the increasing welding current, while the impact properties of welds change little. The poor impact properties of the weld are another focus of this study. The fracture surfaces of the Charpy V-notch specimens were characterized using the scanning electron microscope (SEM).

Key words:  high nitrogen stainless steel      double shielded      ferrite      precipitated phase,      impact property     
Received:  04 September 2012     
ZTFLH:     
Fund:  

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00514     OR     https://www.ams.org.cn/EN/Y2013/V49/I2/129

[1] Berns H. ISIJ Int, 1996; 36: 909


[2] Ikegami Y, Nemoto R. ISIJ Int, 1996; 36: 855

[3] Rawers I C, White H, Doan R. ISIJ Int, 1996; 36: 746

[4] Gavriljuk V G. ISIJ Int, 1996; 36: 738

[5] Liu W, Zheng Y G, Liu C S, Yao Z M, Ke W.  Acta Metall Sin, 2003; 39:85

(柳伟, 郑玉贵, 刘常升, 姚治铭, 柯伟. 金属学报, 2003; 39: 85)

[6] Bi H Y, Jiang X X, Li S Z, Yang J X. Acta Metall Sin, 1997; 33: 1069

(毕红运, 姜晓霞, 李诗卓, 杨景祥. 金属学报, 1997; 33: 1069)

[7] Lu S P, Li D J, Li D Z, Li Y Y. Trans Chin Weld Inst, 2010; 31(2):21

(陆善平, 李冬杰, 李殿中, 李依依. 焊接学报, 2010; 31(2): 21)

[8] Tanaka M, Terasaki H, Ushio M, Lowke J J.  Plasma Chem Plasma Process,2003; 23: 585

[9] Tanaka M, Tashiro S, Ushio M, Mita T, Murphy A B, Lowke J J. Vacuum,2006; 80: 1195

[10] Burgardt P, Heiple C R. Weld J, 1986; 65(6): 150

[11] Sahoo P, DebRoy T, McNallan M J. Metall Trans, 1988; 19B: 483

[12] Katayama S, Fujimoto T, Matsunawa A. Trans JWRI, 1985; 14(1): 123

[13] Arata Y, Matsuda F, Katayama S. Trans JWRI, 1976; 5(2): 135

[14] Brooks J A, Thompson A W, Williams J C. Weld J, 1984; 63(3): 71s

[15] Fredriksson H. Metall Trans, 1972; 3: 2989

[16] Leone G L, Kerr H W. Weld J, 1982; 61(1): 13s

[17] Lippold J C, Savage W F. Weld J, 1980; 59(2): 48s

[18] Lu S P, Fujii H, Nogi K. Scr Mater, 2004; 51: 271

[19] Lu S P, Fujii H, Nogi K. Sci Technol Weld Join, 2007; 12: 689

[20] Howse D S, Lucas W. Sci Technol Weld Join, 2000; 15(5): 189

[21] Liu L M, Zhang Z D, Song G, Wang L. Metall Mater Trans, 2007; 38A:649

[22] Huang H Y. Metall Mater Trans, 2010; 41A: 2829

[23] Anderko K, Schafer L, Materna-Morris E. J Nucl Mater, 1991; 179-181:492

[24] Schafer L. J Nuclear Mater, 1998; 258-263: 1336

[25] Wang P, Lu S P, Xiao N M, Li D Z, Li Y Y. Mater Sci Eng, 2010; A527: 3210
[1] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[2] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
[3] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[4] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[5] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
[6] PENG Jun, JIN Xinyan, ZHONG Yong, WANG Li. Influence of Substrate Surface Structure on the Galvanizability of Fe-16Mn-0.7C-1.5Al TWIP Steel Sheet[J]. 金属学报, 2022, 58(12): 1600-1610.
[7] Xingpin CHEN,Wenjia LI,Ping REN,Wenquan CAO,Qing LIU. Effects of C Content on Microstructure and Properties ofFe-Mn-Al-C Low-Density Steels[J]. 金属学报, 2019, 55(8): 951-957.
[8] Hao CHEN, Congyu ZHANG, Jianing ZHU, Zenan YANG, Ran DING, Chi ZHANG, Zhigang YANG. Austenite/Ferrite Interface Migration and Alloying Elements Partitioning: An Overview[J]. 金属学报, 2018, 54(2): 217-227.
[9] Ke ZHANG, Zhaodong LI, Fengli SUI, Zhenghai ZHU, Xiaofeng ZHANG, Xinjun SUN, Zhenyi HUANG, Qilong YONG. Effect of Cooling Rate on Microstructure Evolution and Mechanical Properties of Ti-V-Mo Complex Microalloyed Steel[J]. 金属学报, 2018, 54(1): 31-38.
[10] Liming DONG,Li YANG,Jun DAI,Yu ZHANG,Xuelin WANG,Chengjia SHANG. Effect of Mn, Ni, Mo Contents on Microstructure Transition and Low Temperature Toughness of Weld Metal for K65 Hot Bending Pipe[J]. 金属学报, 2017, 53(6): 657-668.
[11] Jun ZHANG,Wenxiong CHEN,Chengwu ZHENG,Dianzhong LI. Phase-Field Modeling of Austenite-to-Ferrite Transformation in Fe-C-Mn Ternary Alloys[J]. 金属学报, 2017, 53(6): 760-768.
[12] Fengyu SONG,Yanmei LI,Ping WANG,Fuxian ZHU. EFFECTS OF HEAT INPUT ON THE MICROSTRUC-TURE AND IMPACT TOUGHNESS OF WELD METAL PROCESSED BY A NEW FLUXNOVEL FLUX CORED WIRE WELD[J]. 金属学报, 2016, 52(7): 890-896.
[13] Xuelin WANG,Liming DONG,Weiwei YANG,Yu ZHANG,Xuemin WANG,Chengjia SHANG. EFFECT OF Mn, Ni, Mo PROPORTION ON MICRO-STRUCTURE AND MECHANICAL PROPERTIESOF WELD METAL OF K65 PIPELINE STEEL[J]. 金属学报, 2016, 52(6): 649-660.
[14] Yanhong LU, Yuanyuan SONG, Shenghu CHEN, Lijian Rong. EFFECTS OF Al AND Si ON MECHANICAL PROPERTIES AND CORROSION RESISTANCE IN LIQUID Pb-Bi EUTECTIC OF 9Cr2WVTa STEEL[J]. 金属学报, 2016, 52(3): 298-306.
[15] Yanxin QIAO,Shuo WANG,Bin Liu,Yugui ZHENG,Huabing LI,Zhouhua JIANG. SYNERGISTIC EFFECT OF CORROSION AND CAVITATION EROSION OF HIGH NITROGEN STAINLESS STEEL[J]. 金属学报, 2016, 52(2): 233-240.
No Suggested Reading articles found!