Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (4): 601-618    DOI: 10.11900/0412.1961.2019.00369
Current Issue | Archive | Adv Search |
Research Status of Weldability of Advanced Steel
PENG Yun1(),SONG Liang1,2,ZHAO Lin1,MA Chengyong1,ZHAO Haiyan2,TIAN Zhiling1
1.Central Iron and Steel Research Institute, Beijing 100081, China
2.Tsinghua University, Beijing 100084, China
Download:  HTML  PDF(19246KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

New generation advanced steel has been studied with the increased requirement for high property steel by various engineering fields since the 21st century. Correspondingly, their welding materials and welding techniques are crucial for the application of the steels. In this paper, the research status and the development of the welding processes, microstructure and properties of welded joint of the advanced steel, including ultra-fine grained steel, low carbon bainitic steel, high nitrogen austenite stainless steel and high strength automotive steel are introduced. The microstructure evolution of welded joints, the microstructure and properties of welded joints, the formation of inclusions and martenite-austenite (M-A) components and its influence on properties, and the influence of alloying elements and heat input on weld properties are reviewed. Study results show that heat affected zone (HAZ) is the main area which affects the performance of welded joints, and proper welding materials and processes are required to achieve a matching welded joint. The strengthening and toughening mechanism of weld joint, mechanism of fatigue crack growth, effect of welding thermal process on microstructure and properties of steel, are also reviewed. At last, the research prospect on welding materials and welding techiques is presented.

Key words:  bainitic steel      ultra-fine grained steel      high nitrogen austenite stainless steel      high strength automobile steel      weldability     
Received:  04 November 2019     
ZTFLH:  TG142,TG42,TG44  
Fund: National Key Research and Development Program of China(2017YFB0304700)
Corresponding Authors:  Yun PENG     E-mail:  pengyun@cisri.com.cn

Cite this article: 

PENG Yun,SONG Liang,ZHAO Lin,MA Chengyong,ZHAO Haiyan,TIAN Zhiling. Research Status of Weldability of Advanced Steel. Acta Metall Sin, 2020, 56(4): 601-618.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00369     OR     https://www.ams.org.cn/EN/Y2020/V56/I4/601

Fig.1  Microstructures of laser welded joint of SS400 steel (heat input 2100 W, welding speed 0.8 m/min)(a) welding metal (WM) (b) heat affected zone (HAZ) (c) base metal (BM)
Fig.2  TEM images of lower bainite of laser welded joint of 400 MPa ultra-fine grain steel(heat input 2400 W, welding speed 1.0 m/min)(a) parallel ferrite lath (b) ferrite lath in different directions(c) bainitic lath and a small amount of retained austenite (d) carbide dispersed in ferrite
Fig.3  Welding metal morphologies of metal active gas (MAG) welding joint with different carbon equivalents (Ceq) of ultra low carbon bainite (ULCB) steel (B—bainite, AF—acicular ferrite, GB—grain boundary, M—martensite)(a) Ceq=0.34 (b) Ceq=0.30 (c) Ceq=0.36 (d) Ceq=0.38
Fig.4  Fracture morphologies of ULCB metal active gas (MAG) welding joint deposited metal (-50 ℃)(a) quasi-cleavage (b) quasi-cleavage and dimple
Fig.5  TEM images of 1Cr22Mn15N melt inert-gas (MIG) welding joint in heat affected zone (HAZ)(a) austenite (b) δ-ferrite
Fig.6  TEM images and diffraction pattern of Cr23C6 in HAZ of 1Cr22Mn15N MIG welding joint (peak temperature 800 ℃, welding speed 50 ℃/s)(a) bright field image (b) dark field image (c) diffraction pattern
Fig.7  Volume fraction of nitrogen of argon in arc welding seam
Fig.8  Microstructure of HC420LA joint weld zone (power 1000 W, welding speed 2.4 m/min; CGHAZ—coarse-grained heat-affected zone, FGHAZ—fine-grained heat-affected zone, ICHAZ—intercritical heat-affected zone)
Fig.9  Effect of welding speed (a) and defocusing amount (d) (b) on joint hardness
[1] Peng Y, Tian Z L, He C H, et al. Microstructures and mechanical properties of welding HAZ of 400 MPa ultra-fine grained steel [J]. Trans. China Weld. Inst., 2003, 24(5): 21
[1] 彭 云, 田志凌, 何长红等. 400 MPa级超细晶粒钢板焊接热影响区的组织和力学性能 [J]. 焊接学报, 2003, 24(5): 21
[2] Qu Z X, Tian Z L, He C H, et al. Ultra-fine grained steel and its weldability [J]. Iron Steel, 2000, 35(2): 70
[2] 屈朝霞, 田志凌, 何长红等. 超细晶粒钢及其焊接性 [J]. 钢铁, 2000, 35(2): 70
[3] He C H, Peng Y, Tian Z L, et al. Microstructure and properties of welded joint of 400 MPa ultra-fine grained hot rolled ribbed rebar [J]. J. Iron Steel Res., 2004, 16(6): 56
[3] 何长红, 彭 云, 田志凌等. 400 MPa级超细晶粒热轧带肋钢筋焊接接头的组织和性能 [J]. 钢铁研究学报, 2004, 16(6): 56
[4] Qu Z X, Tian Z L, Du Z Y, et al. Grain growth in HAZ of ultra-fine grain steels [J]. Trans. China Weld. Inst., 2000, 21(4): 9
[4] 屈朝霞, 田志凌, 杜则裕等. 超细晶粒钢HAZ晶粒长大的规律 [J]. 焊接学报, 2000, 21(4): 9
[5] Weng Y Q. Ultra-Fine Grain Steel [M]. Beijing: Metallurgy Industry Press, 2003: 623, 644, 685
[5] 翁宇庆. 超细晶钢 [M]. 北京: 冶金工业出版社, 2003: 623, 644, 685
[6] Peng Y, Wang C, Chen W Z, et al. Laser welding of two super fine grain steels [J]. Trans. China Weld. Inst., 2001, 22(1): 31
[6] 彭 云, 王 成, 陈武柱等. 两种规格超细晶粒钢的激光焊接 [J]. 焊接学报, 2001, 22(1): 31
[7] Hou Z B, Shi Y W, Tian Z L. Fatigue crack growth rate in ultra-fine grain steel SS400 and its welded joint [J]. J. Iron Steel Res., 2004, 16(2): 47
[7] 侯振波, 史耀武, 田志凌. SS400超细晶粒钢及其焊接接头的疲劳裂纹扩展速率 [J]. 钢铁研究学报, 2004, 16(2): 47
[8] Zhao Y Z, Li B, Shi Y W, et al. Fine structures in coarse grained zone of ultrafine grained steels [J]. Acta Metall. Sin., 2003, 39: 505
[8] 赵玉珍, 李 擘, 史耀武等. 超级钢焊接接头粗晶区的精细结构 [J]. 金属学报, 2003, 39: 505
[9] Peng Y, He C H, Tian Z L, et al. Study on welding process adaptability of ultra-fine grain low carbon steel [J]. Mod. Manufact. Eng., 2005, (8): 10
[9] 彭 云, 何长红, 田志凌等. 超细晶粒低碳钢焊接工艺适应性研究 [J]. 现代制造工程, 2005, (8): 10
[10] Tian Z L, He C H, Zhang X M, et al. Welding of 400 MPa ultra-fine grain steels [J]. Trans. China Weld. Inst., 2001, 22(6): 1
[10] 田志凌, 何长红, 张晓牧等. 400 MPa级超细晶粒钢的焊接 [J]. 焊接学报, 2001, 22(6): 1
[11] Wang S C, Kao P W. The effect of alloying elements on the structure and mechanical properties of ultra low carbon bainitic steels [J]. J. Mater. Sci., 1993, 28: 5169
[12] Miao P F, Tong Y G, Guo Y B. Effect of alloying elements on ultra-low-carbon bainite steel and its influence on weldability [J]. Hot Work. Technol., 2010, 39(20): 29
[12] 缪鹏飞, 童彦刚, 郭彦兵. 超低碳贝氏体钢中合金元素的作用及其对焊接性的影响 [J]. 热加工工艺, 2010, 39(20): 29
[13] Wang X M, Yang S W, He X L, et al. Study on impact toughness of HAZ in ultra-low carbon bainitic steel [J]. J. Iron Steel Res., 2000, 12(1): 47
[13] 王学敏, 杨善武, 贺信莱等. 超低碳贝氏体钢焊接热影响区冲击韧性的研究 [J]. 钢铁研究学报, 2000, 12(1): 47
[14] Xue X H, Hua Y C, Zheng H J, et al. Ultra-low carbon and alloy of high strength steel [J]. Mar. Technol., 2004, (1): 26
[14] 薛小怀, 华永成, 郑惠锦等. 高强钢的超低碳微合金化 [J]. 造船技术, 2004, (1): 26
[15] Lis A K. Mechanical properties and microstructure of ULCB steels affected by thermomechanical rolling, quenching and tempering [J]. J. Mater. Process. Technol., 2000, 106: 212
[16] Yang X Q, Yang H L, Yao L D. Supper-low-carbon bainitic steel WDB620 and its welding performance [J]. Mater. Mech. Eng., 2003, 27(9): 42
[16] 杨秀芹, 杨海林, 姚连登. 超低碳贝氏体WDB620钢及其焊接性 [J]. 机械工程材料, 2003, 27(9): 42
[17] Bhadeshia H K D H. Bainite in Steels [M]. 2nd Ed., London: IOM Communication, 2001: 1
[18] Yang Y X, Tong Y G, Liu M T, et al. Relationship between the toughness and fine microstructures of M-A constituents in restrained multipass TIG welded HAZS of 15CrMoV bainitic steel [J]. Trans. China Weld. Inst., 1986, 7(4): 174
[18] 杨永兴, 童彦刚, 刘妙涛等. 15CrMoV钢拘束状态多层焊近缝区M-A组织的精细结构与韧性 [J]. 焊接学报, 1986, 7(4): 174
[19] Li Y, Baker T N. Effect of morphology of martensite-austenite phase on fracture of weld heat affected zone in vanadium and niobium microalloyed steels [J]. Mater. Sci. Technol., 2010, 26: 1029
[20] Shuichi S, Takahiro K, Yuichi K. Influence of martensitic islands on fracture behaviour of high heat input weld HAZ [J]. Weld. Int., 2009, 23: 397
[21] Wang A H, Peng Y, Xiao H J, et al. Impact fracture behavior of deposited metal of 690 MPa level high strength low alloy steel [J]. J. Mech. Eng., 2012, 48(2): 73
[21] 王爱华, 彭 云, 肖红军等. 690 MPa级低合金高强钢熔敷金属冲击断裂行为研究 [J]. 机械工程学报, 2012, 48(2): 73
[22] Shi Y W, Han Z X. Evaluation of HAZ fracture toughness for 800 MPa grade HSLA used for construction machinery [J]. Hot Work. Technol., 2006, 35(15): 1
[22] 史耀武, 韩准祥. 工程机械用800 MPa低合金高强度钢焊接热影响区断裂韧性评价 [J]. 热加工工艺, 2006, 35(15): 1
[23] Thewlis G. Weldability of X100 linepipe [J]. Sci. Technol. Weld. Joining, 2000, 5: 365
[24] Zhang X Y, Gao H L, Zhuang C J, et al. Influence of welding heat input on microstructure and properties of coarse grain heat-affected zone in X100 pipeline steel [J]. Trans. China Weld. Inst., 2010, 31(3): 29
[24] 张骁勇, 高惠临, 庄传晶等. 焊接热输入对X100管线钢粗晶区组织及性能的影响 [J]. 焊接学报, 2010, 31(3): 29
[25] Mabuchi H, Uemori R, Fujioka M. The role of Mn depletion in intra-granular ferrite transformation in the heat affected zone of welded joints with large heat input in structural steels [J]. ISIJ Int., 1996, 36: 1406
[26] Ishikawa F, Takahashi T, Ochi T. Intragranular ferrite nucleation in medium-carbon vanadium steels [J]. Metall. Mater. Trans., 1994, 25A: 929
[27] Bramfitt B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron [J]. Metall. Trans., 1970, 1: 1987
[28] Enomoto M. Nucleation of phase transformations at intragranular inclusions in steel [J]. Met. Mater., 1998, 4: 115
[29] Zhang Z, Farrar R A. Role of non-metallic inclusions in formation of acicular ferrite in low alloy weld metals [J]. Mater. Sci. Technol., 1996, 12: 237
[30] Lan L Y, Qiu C L, Zhao D W, et al. Microstructural characters and toughness of different sub-regions in the welding heat affected zone of low carbon bainitic steel [J]. Acta Metall. Sin., 2011, 47: 1046
[30] 兰亮云, 邱春林, 赵德文等. 低碳贝氏体钢焊接热影响区中不同亚区的组织特征与韧性 [J]. 金属学报, 2011, 47: 1046
[31] Zhang Z, Farrar R A. Role of non-metallic inclusions in formation of acicular ferrite in low alloy weld metals [J]. Mater. Sci. Technol., 1996, 12: 237
[32] Cao Z M, Zhang G F, Zhang J M, et al. Evolution of M-A constituents in HAZ and its effect on toughness of MAG joint of granular bainitic steel Q690C [J]. J. Mech. Eng., 2014, 50(20): 84
[32] 曹志民, 张贵锋, 张建明等. Q690C粒状贝氏体钢MAG焊接头中M-A组元的演变及其对热影响区冲击韧度的影响 [J]. 机械工程学报, 2014, 50(20): 84
[33] Jiang Q M, Zhang X Q, Chen L Q. Weldability of high strength ultra low carbon bainite steel [J]. Weld. Technol., 2015, 44(12): 29
[33] 蒋庆梅, 张小强, 陈礼清. 高强度超低碳贝氏体钢的焊接性能 [J]. 焊接技术, 2015, 44(12): 29
[34] Liao J, Ikeuchi K, Matsuda F. Effect of cooling time on HAZ toughness and microstructure: Simulated HAZ toughness of low-alloy SQV-2A pressure vessel steel [J]. Weld. Int., 1996, 10: 552
[35] Gao H L, Dong Y H, Feng Y R. Welding local embrittlement of oil and gas pipeline steel and its prevention [J]. Chin. J. Mech. Eng., 2001, 37(3): 14
[35] 高惠邻, 董玉华, 冯耀荣. 油、气管线钢的焊接局部脆化及其预防 [J]. 机械工程学报, 2001, 37(3): 14
[36] Zhang M, Chen Y Y, Liu M Z, et al. Analysis of toughening mechanism of submerged arc welded joint of ultra low carbon bainite steel [J]. Trans. China Weld. Inst., 2016, 37(6): 45
[36] 张 敏, 陈阳阳, 刘明志等. 超低碳贝氏体钢埋弧焊焊接接头韧化机理分析 [J]. 焊接学报, 2016, 37(6): 45
[37] Zhang Y J, Ma C Y, Peng Y, et al. Microstructure and properties of welded joint of Q390E steel by SAW [J]. Hot Work. Technol., 2013, 42(15): 161
[37] 张元杰, 马成勇, 彭 云等. Q390E钢埋弧焊焊接接头组织与性能 [J]. 热加工工艺, 2013, 42(15): 161
[38] Enomoto M, Wu K M, Inagawa Y, et al. Three-dimensional observation of ferrite plate in low carbon steel weld [J]. ISIJ Int., 2005, 45: 756
[39] Zhang M, Yang L, Li J H. Effects of welding heat input on properties of joints of X100 pipeline steel [J]. Chin. J. Mater. Res., 2012, 26: 567
[39] 张 敏, 杨 亮, 李继红. 焊接热输入对X100管线钢接头性能的影响 [J]. 材料研究学报, 2012, 26: 567
[40] Zhang X Y, Gao H L, Zhuang C J, et al. Influence of welding heat input on microstructure and properties of coarse grain heat-affected zone in X100 pipeline steel [J]. Trans. China Weld. Inst., 2010, 31(3): 29
[40] 张骁勇, 高惠临, 庄传晶等. 焊接热输入对X100管线钢粗晶区组织及性能的影响 [J]. 焊接学报, 2010, 31(3): 29
[41] Zhang X B, Cao R, Feng W, et al. Fracture mechanism of in-situ tensile of TIG welding joints for 980 MPa high strength steels [J]. China Mech. Eng., 2010, 21: 2746
[41] 张晓波, 曹 睿, 冯 伟等. 980 MPa高强钢TIG焊接接头原位拉伸断裂机理 [J]. 中国机械工程, 2010, 21: 2746
[42] Zhang X B, Cao R, Peng Y, et al. Tensile fracture mechanism of different samples from MAG welded joints of 980 MPa low carbon bainite high strength steel [J]. Mater. Mech. Eng., 2012, 36(2): 19
[42] 张晓波, 曹 睿, 彭 云等. 980 MPa级低碳贝氏体高强钢MAG焊接接头不同试样的拉伸断裂机理 [J]. 机械工程材料, 2012, 36(2): 19
[43] Du Q B, Ma C Y, Peng Y, et al. Effect of heat input on microstructure and performance of weld metal for Q890 high strength steel [J]. Mater. Sci. Technol., 2013, 21(5): 143
[43] 杜全斌, 马成勇, 彭 云等. 热输入对Q890高强钢焊缝组织及性能的影响 [J]. 材料科学与工艺, 2013, 21(5): 143
[44] Yi H L, Du L X, Wang G D, et al. Bainite transformation under continuous cooling of Nb-microalloyed low carbon steel [J]. J. Iron Steel Res. Int., 2006, 13(3): 36
[45] Ma C Y, Tian Z L, Du Z Y, et al. Effect of heat input on structure and mechanical properties of welded joint in a 800 MPa grade RPC steel [J]. Trans. China Weld. Inst., 2004, 25(2): 23
[45] 马成勇, 田志凌, 杜则裕等. 热输入对800 MPa级钢接头组织及性能的影响 [J]. 焊接学报, 2004, 25(2): 23
[46] Li Y J, Jiang Q L, Bao Y P, et al. Effect of heat input on the microstructure and toughness of heat affect zone of Q690 high strength steel [J]. Sciencepaper Online, 2011, 6: 98
[46] 李亚江, 蒋庆磊, 暴一品等. 焊接热输入对Q690高强钢热影响区组织和韧性的影响 [J]. 中国科技论文在线, 2011, 6: 98
[47] Yan C Y, Li W S, Liu H, et al. Factors influencing notch toughness of coarse-grained heat affected zone for 9%Ni steel [J]. J. Mech. Eng., 2010, 46(18): 96
[47] 严春妍, 李午申, 刘 欢等. 9%Ni钢焊接粗晶区的韧化因素 [J]. 机械工程学报, 2010, 46(18): 96
[48] Moeinifar S, Kokabi A H, Hosseini H R M. Influence of peak temperature during simulation and real thermal cycles on microstructure and fracture properties of the reheated zones [J]. Mater. Des., 2010, 31: 2948
[49] Moeinifar S, Kokabi A H, Hosseini H R M. Effect of tandem submerged arc welding process and parameters of gleeble simulator thermal cycles on properties of the intercritically reheated heat affected zone [J]. Mater. Des., 2011, 32: 869
[50] Lu D X, Cen Y, Wang H, et al. Structure and mechanical properties on DH40 ship building steel joints by multi-layer and multi-pass welding technology [J]. Trans. China Weld. Inst., 2013, 34(2): 79
[50] 陆雪冬, 岑 越, 王 欢等. 多层多道焊接DH40船用钢接头组织及力学性能 [J]. 焊接学报, 2013, 34(2): 79
[51] Xu L H, Chen Y Q, Zhang J, et al. Effect of thermal cycle on microstructure and mechanical properties of heat affected zone of 07MnCrMoVR steel [J]. Iron Steel, 2011, 46(2): 62
[51] 许良红, 陈延清, 章 军等. 焊接热循环对07MnCrMoVR钢热影响区组织及韧性的影响 [J]. 钢铁, 2011, 46(2): 62
[52] Peng J X, Zhang T H, Du Y, et al. Effect of secondary welding thermal cycles on microstructure and toughness of over-heated zone of ultrahigh strength steel [J]. Dev. Appl. Mater., 2006, 21(3): 23
[52] 彭冀湘, 张田宏, 杜 义等. 二次焊接热循环对超高强度钢过热区冲击性能的影响 [J]. 材料开发与应用, 2006, 21(3): 23
[53] Xing S Q, Lu H C, Ma Y L, et al. Microstructure evolution of CG-HAZ reheated by second thermal cycle for 800 MPa grade high strength steel [J]. J. Mater. Eng., 2015, 43(7): 93
[53] 邢淑清, 陆恒昌, 麻永林等. 800 MPa级高强钢焊接粗晶区再热循环的组织转变规律 [J]. 材料工程, 2015, 43(7): 93
[54] Raj B. High Nitrogen Steels and Stainless Steels [M]. Abington: Woodhead Publishing, 2004: 1
[55] Harzenmoser M. Welding of high nitrogen steels [J]. Mater. Manuf. Process., 2004, 19: 75
[56] Woo I, Kikuchi Y. Weldability of high nitrogen stainless steel [J]. ISIJ Int., 2002, 42: 1334
[57] Woo I, Horinouchi T, Kikuchi Y. Effect of microstructure on the heat affected zone of high nitrogen containing Ni-free austenite stainless steel [J]. Trans. JWRI, 2001, 30(1): 77
[58] Liao J S. Nitride precipitation in weld HAZs of a duplex stainless steel [J]. ISIJ Int., 2001, 41: 460
[59] Ogawa M, Hiraoka K, Katada Y, et al. Chromium nitride precipitation behavior in weld heat-affected zone of high nitrogen stainless steel [J]. ISIJ Int., 2002, 42: 1391
[60] Du W S, Peng Y, Zhao L, et al. Microstructure and mechanical properties of MIG welded joint of high nitrogen austenite stainless steel [J]. Weld. Joining, 2008, (12): 25
[60] 杜挽生, 彭 云, 赵 琳等. 高氮奥氏体不锈钢MIG焊接头的组织和性能 [J]. 焊接, 2008, (12): 25
[61] Du W S, Zhao L, Tian Z L, et al. Microstructure characterization of weld HAZ in 1Cr22Mn15N high nitrogen austenitic stainless steel [J]. Trans. China Weld. Inst., 2007, 28(7): 1
[61] 杜挽生, 赵 琳, 田志凌等. 高氮奥氏体不锈钢1Cr22Mn15N热影响区组织特征 [J]. 焊接学报, 2007, 28(7): 1
[62] Balachandran G. Developments in the manufacture of high nitrogen stainless steels [A]. High Nitrogen Steels and Stainless Steels [M]. Pangbourne, UK: Alpha Science International Ltd., 2004: 66
[63] Iamboliev T, Zumbilev A. Laser beaming welding of high-nitrogen containing austenitic steel [J]. Weld. J., 1999, 78: 245
[64] Harzenmoser M, Rennhard C, Hereth M, et al. Recent developments on the weldability of a new high nitrogen stainless steel [J]. Mater. Sci. Forum, 1999, 318-320: 591
[65] Du Toit M. The behaviour of nitrogen during the autogenous arc welding of stainless steel [D]. Pretoria: University of Pretoria, 2004
[66] Kuwana T, Kokawa H. The nitrogen absorption of iron weld metal during gas tungsten arc welding [J]. Trans. Jpn. Weld. Soc., 1986, 17: 20
[67] Blake P D. Nitrogen in steel welds metals [J]. Met. Constr., 1979: 196
[68] Den Ouden G, Ohno S. Effect of surface active elements on nitrogen content of iron under arc melting [J]. Trans. Natl. Res. Inst. Metall., 1973, 15: 20
[69] Kamiya O, Chen Z W, Kikuchi Y. Microporosity formation in partially melted zone during welding of high nitrogen austenitic stainless steels [J]. Met. Mater. Sci., 2003, 37: 2475
[70] Kuwana T, Kokawa H, Naitoh K. The nitrogen absorption of stainless steel weld metal during gas tungsten arc weldign [J]. Trans. Jpn. Weld. Soc., 1986, 17: 15
[71] Hertzman S, Wessman S. An experimental and theoretical study of nitrogen flux in stainless steel TIG welds [J]. Mater. Sci. Forum, 1999, 318-320: 579
[72] Katz J D, King T B. The kinetics of nitrogen absorption and desorption from a plasma arc by molten iron [J]. Metall. Mater. Trans., 1989, 20B: 175
[73] Uda M, Ohno S. Effect of surface active elements on nitrogen content of iron under arc melting [J]. Trans. Natl. Res. Inst. Metall., 1973, 15: 20
[74] Lancaster J F. Metallurgy of Welding [M]. Abington: Woodhead Publishing, 1999: 1
[75] Ogawa T, Suzuki K, Zaizen T. The weldability of nitrogen-containing austenitic stainless steel: Part II-Porosity, cracking and creep properties [J]. Weld. J., 1984, 63: 213
[76] Du Toit M, Pistorius P C. Nitrogen control during autogenous arc welding of stainless steel: Part I-Experimetal observations [J]. Weld. J., 2003, 82: 219
[77] Du Toit M, Pistorius P C. Nitrogen control during the autogenous arc welding of stainless steel: Part II-A kinetic model for nitrogen absorption and desorption [J]. Weld. J., 2003, 82: 231
[78] Arlt N, Gilessen C, Heimann W. High nitrogen steels HNS 90 [C]. Stahleisen, Dusseldorf, 1990: 150
[79] Akdut N, Foct J. Microstructure and deformation behavior of high nitrogen duplex stainless steels [J]. ISIJ Int., 1996, 36: 883
[80] Uggowitzer R J, Magdowski R, Speidel M O. Nickel free high nitrogen austenitic steels [J]. ISIJ Int., 1996, 36: 901
[81] Simmons J W, Convino B SHawkJr, , et al. Effect of nitride (Cr2N) precipitation on the mechanical, corrosion, and wear properties of austenitic stainless steel [J]. ISIJ Int., 1996, 36: 846
[82] Ogawa M, Hiraoka K, Katada Y, et al. Chromium nitride precipitation behavior in weld heat-affected zone of high nitrogen stainless steel [J]. ISIJ Int., 2002, 42: 1391
[83] Du Toit M. Filler metal selection for welding a high nitrogen stainless steel [J]. J. Mater. Eng. Perform., 2002, 11: 306
[84] Nishimoto K, Mori H. Hot cracking susceptibility in laser weld metal of high nitrogen stainless steels [J]. Sci. Technol. Adv. Mater., 2004, 5: 231
[85] Long C J, DeLong W T. The ferrite content of austenitic stainless steel weld metal [J]. Weld. Technol., 1973, 52: 281
[86] Woo I, Horinouchi T, Kikuchi Y. Heat-affected zone cracking susceptibility in high nitrogen-containing austenitic stainless steel [J]. Tetsu Hagańe, 2001, 87: 486
[86] 禹 仁秀, 堀之内 力, 菊地 靖志. 高窒素含有オーステナイト系ステンレス鋼のHAZ割れ感受性 [J]. 鉄と鋼, 2001, 87: 486
[87] Enjo T, Kikuchi Y, Kobayashi T, et al. Gas shielded arc welding of high-nitrogen austenitic stainless steel [J]. Trans. JWRI, 1980, 9(2): 173
[88] Woo I, Aritoshi M, Kikuchi Y. Metallurgical and mechanical properties of high nitrogen austenitic stainless steel friction welds [J]. ISIJ Int., 2002, 42: 401
[89] Yang Z Q, Ma G Y. The study on the lightweight design method of the rear longitudinal beam of a car [J]. Automob. Appl. Technol., 2018, (8): 132
[89] 杨志强, 麻桂艳. 汽车后纵梁轻量化设计方法研究 [J]. 汽车实用技术, 2018, (8): 132
[90] Lei H J. Energy saving and new energy vehicle technology route [J]. Auto Time, 2017, (1): 12
[90] 雷洪钧. 节能与新能源汽车技术路线图 [J]. 时代汽车, 2017, (1): 12
[91] Sun G N. Vehicle lightweight technology [J]. Auto Eng., 2017, (7): 14
[91] 孙冠男. 汽车轻量化技术 [J]. 汽车工程师, 2017, (7): 14
[92] Zhang Y, Li Y N, Chang Y T, et al. Properties of high strength plastic product hot rolled medium manganese steel and its application in automobile lightweight [J]. Automob. Technol. Mater., 2017, (7): 49
[92] 张 洋, 李莹娜, 常悦彤等. 高强塑积热轧中锰钢的性能及其在汽车轻量化中的应用 [J]. 汽车工艺与材料, 2017, (7): 49
[93] Wang Z, Hu F Y, Cui A Y, et al. Current status and prospect of research on laser welding technology [J]. New Technol. New Process, 2016, (3): 42
[93] 王 志, 胡芳友, 崔爱永等. 激光焊接技术的研究现状及发展趋势 [J]. 新技术新工艺, 2016, (3): 42
[94] Wang Y J, Cao Y, Peng Y, et al. Effects of welding speed on laser welded joints microstructure and properties of HC420LA low alloy high strength steel [J]. Appl. Laser, 2018, 38: 591
[94] 王艳杰, 曹 洋, 彭 云等. 焊接速度对HC420LA低合金高强钢激光焊接接头组织与性能的影响 [J]. 应用激光, 2018, 38: 591
[95] Xu J J, Wang K H, Peng Y, et al. Effect of heat input on stomatal resistance and mechanical properties of high nitrogen steel plate laser welding joint [J]. Mar. Technol., 2016, (1): 55
[95] 徐娟娟, 王克鸿, 彭 勇等. 热输入对高氮钢光纤激光焊接接头气孔及组织性能的影响 [J]. 造船技术, 2016, (1): 55
[96] Jing H, Wang K H, Qiang W, et al. Effect of N-content on microstructure and mechanical properties of PMIG welding joints of high nitrogen steel [J]. Trans. China Weld. Inst., 2017, 38(4): 95
[96] 荆 皓, 王克鸿, 强 伟等. 氮含量对高氮钢PMIG焊接头组织和性能的影响 [J]. 焊接学报, 2017, 38(4): 95
[97] Cui B, Zhang H, Liu J, et al. Study on the impact of the shielding gas on the droplet transfer mode and blowhole defect of high nitrogen steel welding [J]. J. Mech. Eng., 2017, 53(22): 87
[97] 崔 博, 张 宏, 刘 佳等. 保护气体对高氮钢焊接熔滴过渡模式和气孔缺陷的影响研究 [J]. 机械工程学报, 2017, 53(22): 87
[98] Woo I, Kikuchi Y. Weldability of high nitrogen stainless steel [J]. ISIJ Int., 2002, 42: 1334
[99] Zhai Z J, Cao Y, Zhao L, et al. Effect of heat input on microstructure and mechanical properties of laser welded DP600 steel [J]. J. Iron Steel Res., 2019, 31: 582
[99] 翟战江, 曹 洋, 赵 琳等. 热输入对DP600激光焊组织和力学性能的影响 [J]. 钢铁研究学报, 2019, 31: 582
[100] Li Y J. Effects of air holes and cracks on the mechanical properties of high nitrogen steel fiber laser welded joints [J]. Appl. Laser, 2017, 37: 681
[100] 李永杰. 气孔和裂纹对高氮钢光纤激光焊接接头力学性能的影响 [J]. 应用激光, 2017, 37: 681
[101] Soussan A, Degallaix S, Magnin T. Work-hardening behaviour of nitrogen-alloyed austenitic stainless steels [J]. Mater. Sci. Eng., 1991, A142: 169
[102] Lee S, De Cooman B C. Tensile behavior of intercritically annealed ultra-fine grained 8% Mn multi-phase steel [J]. Steel Res. Int., 2015, 86: 1170
[103] Xia M S, Zhang H B, Peng Y, et al. Microstructure and properties of laser welded joints of 980 MPa grade dual phase steel [J]. Automob. Technol. Mater., 2016, (12): 49
[103] 夏明生, 张洪波, 彭 云等. 980 MPa级双相钢激光焊焊接接头的组织和性能特征 [J]. 汽车工艺与材料, 2016, (12): 49
[104] Cao Y, Zhao L,Peng Y, et al. Effect of heat input on microstructure and mechanical properties of laser welded medium Mn steel joints [J]. Chin. J. Lasers, 45(11): 89
[104] 曹 洋, 赵 琳, 彭 云等. 热输入对激光焊中锰钢接头组织和力学性能的影响 [J]. 中国激光, 45(11): 89
[105] Lun N, Saha D C, Macwan A, et al. Microstructure and mechanical properties of fibre laser welded medium manganese TRIP steel [J]. Mater. Des., 2017, 131: 450
[106] Di X J, Deng S J, Wang B S. Effect of pulse current on mechanical properties and dendritic morphology of modified medium manganese steel welds metal [J]. Mater. Des., 2015, 66: 169
[107] Jia Q, Liu L, Guo W, et al. Microstructure and tensile-shear properties of resistance spot-welded medium Mn steel [J]. Metals, 2018, 8: 48
[108] Gilath I, Signamarcheix J M, Bensussan P. A comparison of methods for estimating the weld-metal cooling rate in laser welds [J]. J. Mater. Sci., 1994, 29: 3358
[109] Zhang F, Li F, Hua X M, et al. Research of microstructure and mechanical properties of laser tailor-welded blank of cold rolled multi-phase steel and HSLA [J]. Chin. J. Lasers, 2015, 42(9): 149
[109] 张 帆, 李 芳, 华学明等. 冷轧复相钢与低合金高强钢差厚板激光拼焊的焊缝组织与力学性能研究 [J]. 中国激光, 2015, 42(9): 149
[110] Cao Y, Luo C, Zhao L, et al. Microstructural evolution and mechanical properties of laser-welded joints of medium manganese steel [J]. J. Iron Steel Res. Int., 2019: 1
[111] Hernandez V H B, Nayak S S, Zhou Y. Tempering of martensite in dual-phase steels and its effects on softening behavior [J]. Metall. Mater. Trans., 2011, 42A: 3115
[112] Thompson S W, Colvin D J, Krauss G. Austenite decomposition during continuous cooling of an HSLA-80 plate steel [J]. Metall. Mater. Trans., 1996, 27A: 1557
[113] Esquivel A S, Nayak S S, Xia M S, et al. Microstructure, hardness and tensile properties of fusion zone in laser welding of advanced high strength steels [J]. Can. Metall. Quart., 2012, 51: 328
[114] Dong D Y, Liu Y, Yang Y L, et al. Microstructure and dynamic tensile behavior of DP600 dual phase steel joint by laser welding [J]. Mater. Sci. Eng., 2014, A594: 17
[115] Cao Y, Zhao L, Peng Y, et al. Microstructure and mechanical properties of laser welded new generation medium manganese steel for automobile [J]. Chin. J. Lasers, 2018, 45(11): 1114001
[115] 曹 洋, 赵 琳, 彭 云等. 新一代汽车用中锰钢激光焊接头组织和力学性能研究 [J]. 中国激光, 2018, 45(11): 1114001
[116] Saha D C, Westerbaan D, Nayak S S, et al. Microstructure-properties correlation in fiber laser welding of dual-phase and HSLA steels [J]. Mater. Sci. Eng., 2014, A607: 445
[117] Mao G J, Cao R, Guo X L, et al. In situ observation of kinetic processes of lath bainite nucleation and growth by laser scanning confocal microscope in reheated weld metals [J]. Metall. Mater. Trans., 2017, 48A: 5783
[118] Xia M S, Kuntz M L, Tian Z L, et al. Failure study on laser welds of dual phase steel in formability testing [J]. Sci. Technol. Weld. Joining, 2008, 13: 378
[119] Xia M, Sreenivasan N, Lawson S, et al. A comparative study of formability of diode laser welds in DP980 and HSLA steels [J]. J. Eng. Mater. Technol., 2007, 129: 446
[1] Yaqiang TIAN,Geng TIAN,Xiaoping ZHENG,Liansheng CHEN,Yong XU,Shihong ZHANG. C and Mn Elements Characterization and Stability of Retained Austenite in Different Locations ofQuenching and Partitioning Bainite Steels[J]. 金属学报, 2019, 55(3): 332-340.
[2] LAN Liangyun QIU Chunlin ZHAO Dewen LI Canming GAO Xiuhua DU Linxiu. MICROSTRUCTURAL CHARACTERS AND TOUGHNESS OF DIFFERENT SUB–REGIONS IN THE WELDING HEAT AFFECTED ZONE OF LOW CARBON BAINITIC STEEL[J]. 金属学报, 2011, 47(8): 1046-1054.
[3] GAO Guhui ZHANG Han BAI Bingzhe. EFFECT OF TEMPERING TEMPERATURE ON LOW TEMPERATURE IMPACT TOUGHNESS OF A LOW CARBON Mn-SERIES BAINITIC STEEL[J]. 金属学报, 2011, 47(5): 513-519.
[4] CUI Lei YANG Shanwu WANG Shutao GAO Kewei HE Xinlai. EFFECT OF DAMNIFICATION IN RUST LAYER ON CORROSION BEHAVIORS OF LOWCARBON BAINITIC STEEL IN THE ENVIRONMENT CONTAINING Cl[J]. 金属学报, 2009, 45(4): 442-449.
[5] Shu-Tao WANG; Kewei GAO. CORROSION BEHAVIOR AND VARIATION OF APPARENT MECHANICAL PROPERTY OF ONE NEWLY-DEVELOPED LOW CARBON BAINITIC STEEL IN ENVIRONMENT CONTAINING CHLORIDE ION[J]. 金属学报, 2008, 44(9): 1116-1124 .
[6] LI Fengzhao;GU Yingni;JIANG Jiang;AO Qing;SUN Dongsheng (College of Materials Science and Engineering; Shandong University of Technology; Jinan 250061). MULTI-COMPONENT MICRO-ALLOYED AIR COOLING BAINITIC STEELS[J]. 金属学报, 1997, 33(5): 492-498.
[7] LIU Xiao;ZHANG Mingxing;CHEN Daming;ZHOU Lubin;KANG Mokuang Northwestern Polytechnical University; Xi'an Faculty No.401; Northwestern Polytechnical University; Xi'an 710072. CCT-DIAGRAM OF Si-Mn-Mo ALLOY SYSTEM BAINITIC STEELS[J]. 金属学报, 1993, 29(3): 1-5.
[8] ZHANG Mingxing;KANG Mokuang Baotou Institute of Iron and Steel Technology; Noghwestern Polytechnical University; Xian. INFLUENCE OF Si ON MICROSTRUCTURE AND PROPERTIES OF LOW CARBON BAINITIC STEELS[J]. 金属学报, 1993, 29(1): 6-10.
No Suggested Reading articles found!