Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (11): 1504-1510    DOI: 10.11900/0412.1961.2017.00093
Orginal Article Current Issue | Archive | Adv Search |
Microstructure Analysis of Initial Alumina of Pt-Modified Aluminide Coatings on Ni-Based Alloy
Peng SONG(), Rong CHEN, Jing FENG, Jianguo Lü, Jiansheng LU
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
Cite this article: 

Peng SONG, Rong CHEN, Jing FENG, Jianguo Lü, Jiansheng LU. Microstructure Analysis of Initial Alumina of Pt-Modified Aluminide Coatings on Ni-Based Alloy. Acta Metall Sin, 2017, 53(11): 1504-1510.

Download:  HTML  PDF(4344KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

NiPtAl coatings are widely used as overlaying coatings besides bondcoats for thermal barrier coating (TBC) systems within high temperature environment. Oxidaiton behavior of NiPtAl coatings is mainly contribution for the failure of TBC systems or overlaying coatings. An initial oxide layer growth characteristics play a key role in extending lifetime of TBC system or overlaying coatings. In this work, the oxidation experiments of the Pt modified aluminide coating on CMSX-4 Ni-based alloy were carried out at 1150 ℃ for 1 h in 80%Ar+20%O2. The microstructures of oxide on the NiPtAl coatings are studied by OM, SEM, TEM and Raman spectroscopy. The results indicated that the oxide layer on the NiPtAl coatings included stable and met-stable Al2O3 after 1 h oxidation, and part of spalled oxide layer as well as pores within the oxide layer. The 0.5 μm thickness whisker-like θ-Al2O3 could form on NiPtAl coating during the initially oxidation stage. At the initial oxidation stage θ-Al2O3 fastly grew which resulted β-NiAl to γ'-Ni3Al transformation. The Pt particles formed on the inter-surface between α-Al2O3 and θ-Al2O3 layer due to a less Pt solid solubility in γ'-Ni3Al compared to β-NiAl in the coating. Fast growth of initial Al2O3 could induce pores formation within the alumina layer. The pores and stress due to oxidation and phase transformation could decrease the alumina adherence, and at last result in the oxide spallation.

Key words:  NiPtAl      high temperature coating      initially oxidation      Al2O3      growth characteristics     
Received:  21 March 2017     
ZTFLH:  TG172.82  
Fund: Supported by National Natural Science Foundation of China (No.51401097)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00093     OR     https://www.ams.org.cn/EN/Y2017/V53/I11/1504

Fig.1  Cross-sectional SEM image (a) and the coating surface XRD analysis (b) of as-received NiPtAl coating
Fig.2  OM image (a), SEM image (b) of NiPtAl coating surface after 1 h isothermal oxidation at 1150 ℃ in 80%Ar+20%O2, and Raman spectra for regions I, II and III in Fig.2a (c)(Arrows in Figs.2a and b show the grain boundary of the NiPtAl coating)
Fig.3  Cross-sectional TEM images of Al2O3 on the NiPtAl coating surface for regions I (a), II (b) and III (c) in Fig.2a after 1 h isothermal oxidation at 1150 ℃ in 80% Ar+20%O2
Fig.4  SAED patterns of oxide films from the inner (a) and outer (b) layers showed by circles in Fig.3b
Fig.5  TEM image for the local part within Al2O3 layer showed by rectangle in Fig.3b (a) and HRTEM image for the local part within Al2O3 layer showed by rectangle in Fig.3c (b)
Fig.6  Cross-sectional SEM images of Al2O3 on NiPtAl coating after 1 h isothermal oxidation at 1150 ℃
(a) α-Al2O3 area
(b) α-Al2O3+θ-Al2O3 area
(c) θ-Al2O3 area
[1] Goward G W. Progress in coatings for gas turbine airfoils [J]. Surf. Coat. Technol., 1998, 108-109: 73
[2] Padture N P, Gell M, Jordan E H.Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296: 280
[3] Vassen R, Stuke A, St?ver D.Recent developments in the field of thermal barrier coatings[J]. J. Thermal Spray Technol., 2009, 18: 181
[4] Schulz U, Leyens C, Fritscher K, et al.Some recent trends in research and technology of advanced thermal barrier coatings[J]. Aerosp. Sci. Technol., 2003, 7: 73
[5] Gleeson B, Mu N, Hayashi S.Compositional factors affecting the establishment and maintenance of Al2O3 scales on Ni-Al-Pt systems[J]. J. Mater. Sci., 2009, 44: 1704
[6] Tawancy H M, UI-Hamid A, Abbas N M, et al.Effect of platinum on the oxide-to-metal adhesion in thermal barrier coating systems[J]. J. Mater. Sci., 2008, 43: 2978
[7] Vialas N, Monceau D.Effect of Pt and Al content on the long-term, high temperature oxidation behavior and interdiffusion of a Pt-modified aluminide coating deposited on Ni-base superalloys[J]. Surf. Coat. Technol., 2006, 201: 3846
[8] Haynes J A, Pint B A, More K L, et al.Influence of sulfur, platinum, and hafnium on the oxidation behavior of CVD NiAl bond coatings[J]. Oxid. Met., 2002, 58: 513
[9] Hou P Y, Tolpygo V K.Examination of the platinum effect on the oxidation behavior of nickel-aluminide coatings[J]. Surf. Coat. Technol., 2007, 202: 623
[10] Svensson H, Christensen M, Knutsson P, et al.Influence of Pt on the metal-oxide interface during high temperature oxidation of NiAl bulk materials[J]. Corros. Sci., 2009, 51: 539
[11] Qin F, Anderegg J W, Jenks C J, et al.The effect of Pt on Ni3Al surface oxidation at low-pressures[J]. Surf. Sci., 2007, 601: 146
[12] Chieux M C, Molins R, Rémy L, et al. Effect of material and environmental parameters on the microstructure evolution and oxidation behavior of a Ni-based superalloy coated with a Pt-modified Ni-aluminide [J]. Mater. Sci. Forum, 2008, 595-598: 33
[13] Tawancy H M, Abbas N M, Rhys-Jones T N. Role of platinum in aluminide coatings[J]. Surf. Coat. Technol., 1991, 49: 1
[14] Tolpygo V K, Clarke D R.Microstructural study of the theta-alpha transformation in alumina scales formed on nickel-aluminides[J]. Mater. High Temp., 2000, 17: 59
[15] Song P, Lu J S, Lü J G, et al.Influence factors of high temperature oxidation for Pt-modified-aluminide bond coatings[J]. Rare Met. Mater. Eng., 2010, 39: 304(宋鹏, 陆建生, 吕建国等. 铂铝涂层高温氧化的影响因素研究[J]. 稀有金属材料与工程, 2010, 39: 304)
[16] Song P, Lu J S, Zhang D F.High temperature oxidation of surface polished treatment Pt-modified-aluminide bond coats[J]. Chin. J. Nonferrous Met., 2009, 19: 1417(宋鹏, 陆建生, 张德丰. 抛光处理铂铝粘结层的高温氧化[J]. 中国有色金属学报, 2009, 19: 1417)
[17] Xing L L, Zheng Y J, Cui L S, et al.Progress of water vapour effect on growth of alumina forming alloys[J]. J. Chin. Soc. Corros. Prot., 2011, 31: 409(邢琳琳, 郑雁军, 崔立山等. 水蒸汽影响氧化铝膜生长的研究新进展[J]. 中国腐蚀与防护学报, 2011, 31: 409)
[18] Hayashi S, Narita T, Gleeson B. Early-stage oxidation behavior of γ′-Ni3Al-based alloys with and without Pt addition [J]. Mater. Sci. Forum, 2006, 522-523: 229
[19] Hayashi S, Gleeson B.Early-stage oxidation behavior of Pt-modified γ′-Ni3Al-based alloys with and without Hf addition[J]. Oxid. Met., 2009, 71: 5
[20] Pint B A, Haynes J A, Zhang Y, et al.The effect of water vapor on the oxidation behavior of Ni-Pt-Al coatings and alloys[J]. Surf. Coat. Technol., 2006, 201: 3852
[21] Li M S, Zhou Y C.Transient oxidation of Al2O3 forming alloys[J]. Corros. Sci. Prot. Technol., 2005, 17: 409(李美栓, 周延春. Al2O3形成合金过渡态氧化行为[J]. 腐蚀科学与防护技术, 2005, 17: 409)
[22] Grabke H J.Oxidation of NiAl and FeAl[J]. Intermetallics, 1999, 7: 1153
[23] Svensson H, Stiller K, Angenete J. Investigation of oxide formation during short-term oxidation of model NiAl alloys [J]. Mater. Sci. Forum, 2004, 461-464: 231
[24] Svensson H, Knutsson P, Stiller K.Formation and healing of voids at the metal-oxide interface in NiAl alloys[J]. Oxid. Met., 2009, 71: 143
[25] Hou P Y, Izumi T, Gleeson B.Sulfur segregation at Al2O3/γ-Νi + γ'-Ni3Al interfaces: Effects of Pt, Cr and Hf additions[J]. Oxid. Met., 2009, 72: 109
[26] Hayashi S, Ford S I, Young D J, et al.α-NiPt(Al) and phase equilibria in the Ni-Al-Pt system at 1150 ℃[J]. Acta Mater., 2005, 53: 3319
[1] SONG Qingzhong, QIAN Kun, SHU Lei, CHEN Bo, MA Yingche, LIU Kui. Interfacial Reaction Between Nickel-Based Superalloy K417G and Oxide Refractories[J]. 金属学报, 2022, 58(7): 868-882.
[2] SONG Qianting, XU Yingkun, XU Jian. Dry-Sliding Wear Behavior of (TiZrNbTa)90Mo10 High-Entropy Alloy Against Al2O3[J]. 金属学报, 2020, 56(11): 1507-1520.
[3] Cean GUO, Minghui CHEN, Yimin LIAO, Bei SU, Dongbai XIE, Shenglong ZHU, Fuhui WANG. Protection Mechanism Study of Enamel-Based Composite Coatings Under the Simulated Combusting Gas Shock[J]. 金属学报, 2018, 54(12): 1825-1832.
[4] Tao LIU,Jiasheng DONG,Guang XIE,Yisheng WANG,Hui LI,Zhijun LI,Xingtai ZHOU,Langhong LOU. CORROSION BEHAVIOR OF GH3535 SUPERALLOY IN FLiNaK MOLTEN SALT[J]. 金属学报, 2015, 51(9): 1059-1066.
[5] Mingfang WU,Fei LIU,Fengjiang WANG,Yanxin QIAO. INTERFACIAL REACTION AND STRENGTHENING MECHANISM OF CERAMIC MATRIX COMPOSITE JOINTS USING LIQUID PHASE DIFFUSION BONDING WITH AUXILIARY PULSE CURRENT[J]. 金属学报, 2015, 51(9): 1129-1135.
[6] Yue CUI,Wenjun XI,Xing WANG,Shujie LI. Al2O3 NANOPARTICLE AND NiAl REINFORCED Fe-BASED ODS ALLOYS SYNTHESIZED BY THERMITE REACTION[J]. 金属学报, 2015, 51(7): 791-798.
[7] LIU Yi, JIANG Guofeng, XU Kun, LUO Ximing, CHEN Dengquan, LI Wei. EFFECT OF INTERLAYERS ON THE MICROSTRUC-TURE AND SHEAR STRENGTH OF ALUMINA CERAMIC AND 1Cr18Ni9Ti STAINLESS STEEL BRAZED BONDING[J]. 金属学报, 2015, 51(2): 209-215.
[8] WU Mingfang, KUANG Hongjin, WANG Fengjiang, LIN Hongxiang, XU Guoxiang. PARTIALLY TRANSIENT LIQUID PHASE-DIFFUSION BONDING ON Ti(C, N)-Al2O3 CERAMIC MATRIX COMPOSITES USING Zr/Cu/Zr AS INTERLAYER[J]. 金属学报, 2014, 50(5): 619-625.
[9] CAI Jun, LING Guoping,CHEN Changan, ZHANG Guikai. OBSERVATION ON THE OXIDATION OF LIQUID Al BY ENVIRONMENTAL TRANSMISSION ELECTRON MICROSCOPE[J]. 金属学报, 2013, 49(8): 953-958.
[10] SONG Kan ZHANG Jun JIA Xiaojiao SU Haijun LIU Lin FU Hengzhi. MICROSTRUCTURE OF Al2O3/YAG/ZrO2 HYPEREUTECTIC ALLOY DIRECTIONALLY SOLIDIFIED BY LASER FLOATING ZONE METHOD[J]. 金属学报, 2012, 48(2): 220-226.
[11] ZHANG Huarui GAO Ming TANG Xiaoxia ZHANG Hu. INTERACTION BETWEEN Ti-47Al-2Cr-2Nb ALLOY AND Y2O3 CERAMIC DURING DIRECTIONAL SOLIDIFICATION[J]. 金属学报, 2010, 46(7): 890-896.
[12] LIN Cui ZHAO Qing LIU Yue'e LIANG Jianneng. EVOLUTION OF CORROSION PRODUCTS OF 20 CARBON STEEL IN ATMOSPHERE CONTAINING SO2[J]. 金属学报, 2010, 46(3): 358-365.
[13] SHEN Kun WANG Mingpu GUO Mingxing LI Shumei . STUDY ON HIGH TEMPERATURE DEFORMATION CHARACTERISTICS OF Cu–0.23%Al2O3 DISPERSION–STRENGTHENED COPPER ALLOY[J]. 金属学报, 2009, 45(5): 597-604.
No Suggested Reading articles found!