Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (2): 220-226    DOI: 10.11900/0412.1961.2016.00168
Orginal Article Current Issue | Archive | Adv Search |
Interface Characterization of the Mg/Al Laiminated Composite Fabricated by Accumulative Roll Bonding at Ambient Temperature
Hai CHANG1(),Mingyi ZHENG2,Guenter Brokmeier Heinz3,Weimin GAN4
1 National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China
2 School of Materials, Harbin Institute of Technology, Harbin 150001, China
3 Institute of Materials Science and Engineering, Clausthal Unviersity of Technology, Clausthal-Zellerfeld D38678, Germany
4 Helmholtz-Zentrum Geesthacht, Out Station at FRM2, Garching 85747, Germany
Cite this article: 

Hai CHANG,Mingyi ZHENG,Guenter Brokmeier Heinz,Weimin GAN. Interface Characterization of the Mg/Al Laiminated Composite Fabricated by Accumulative Roll Bonding at Ambient Temperature. Acta Metall Sin, 2017, 53(2): 220-226.

Download:  HTML  PDF(6984KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mg and its alloy have large potential in weight reduction usages because of their low density. However, the relatively low strength and modulus hinder their widely applications. Accumulative roll bonding (ARB) is one kind of severe plastic deformation (SPD) process which can produce bulk ultra-fine-grained (UFG) metallic materials. In order to improve the strength, elastic modulus and corrosion resistance of Mg sheet, accumulative roll bonding was utilized to fabricate UFG Mg/Al laminated composites at ambient temperature in this work. Synchrotron radiation-based computer tomography, SEM and TEM were employed to characterize the global bonding condition and the interface structure of Mg/Al lam inated sheet ARBed after 3 cycles. No obvious cracks could be observed along the bonding interfaces during ARB, although small amount of tiny pores existed in some area. Mg17Al12 phase with thickness of 150 nm formed at Mg/Al interface after 3 cycles. There existed a definite orientation relationship between Mg17Al12 and Mg which is [11?1?]Mg17Al12//[12?10]Mg, (110)Mg17Al12//(1?011?)Mg. Nevertheless, the orientation relationship between Mg17Al12 and Al is not very obvious.

Key words:  accumulative roll bonding      Mg/Al laminated composite      global bonding condition      interface structure      orientation relationship     
Received:  03 May 2016     
Fund: Supported by National Natural Science Foundation of China (Nos.51201006 and 51071057) and Programme of Introducing Talents of Discipline to Universities (No.B12012)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00168     OR     https://www.ams.org.cn/EN/Y2017/V53/I2/220

Fig.1  Schematic of the accumulative roll bonding (ARB) processing for Mg/Al composite
Fig.2  SEM images of longitudinal cross-section of ARBed Mg/Al composite(a) sandwich (b) 1 cycle (c) 2 cycle (d) 3 cycle
Fig.3  SEM images and EDS line scan analyses across the Mg/Al interface(a) sandwich (b) 1 cycle (c) 2 cycle (d) 3 cycle
Fig.4  Synchrotron computer tomography slices along the transverse direction of the sheet ARBed for 3 cycles (Arrows indicate small pores and local cracks along the bonding interfaces)
Fig.5  Low (a) and high (rectangular in Fig.5a) (b) magnified TEM images of the Mg/Al interface ARBed for 3 cycles at room temperature, and EDS analyses of the points A (c), B (d) and C (e) in Fig.5b
Fig.6  HRTEM image and SAED pattern (inset) of the area 1 in Fig.5b
Fig.7  HRTEM image of the Mg17Al12/Mg interface (area 2 in Fig.5b) (a), and corresponding FFT patterns of the upper (b) and lower (c) square regions in Fig.7a (Arrows in Fig.7a indicate the atomic plane misfits, arrows in Fig.7b indicate the (110) diffraction patterns of Mg17Al12)
Fig.8  HRTEM image of the Mg17Al12/Al interface (area 3 in Fig.5b) (a), and corresponding FFT patterns of the upper (b) and lower (c) square regions in Fig.8a (d0~d3—planar distances of possible lattice planes)
[1] Valiev R Z, Islamgaliev R K, Alexandrov I V.Bulk nanostructured materials from severe plastic deformation[J]. Prog. Mater. Sci., 2000, 45: 103
[2] Valiev R Z, Estrin Y, Horita Z, et al.Producing bulk ultrafine-grained materials by severe plastic deformation[J]. JOM, 2006, 58(4): 33
[3] Saito Y, Tsuji N, Utsunomiya H, et al.Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process[J]. Scr. Mater., 1998, 39: 1221
[4] Saito Y, Utsunomiya H, Tsuji N, et al.Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process[J]. Acta Mater., 1999, 47: 579
[5] Lee S H, Saito Y, Tsuji N, et al.Role of shear strain in ultragrain refinement by accumulative roll-bonding (ARB) process[J]. Scr. Mater., 2002, 46: 281
[6] del Valle J A, Pérez-Prado M T, Ruano O A. Accumulative roll bonding of a Mg-based AZ61 alloy [J]. Mater. Sci. Eng., 2005, A410-411: 353
[7] Kwan C, Wang Z R, Kang S B.Mechanical behavior and microstructural evolution upon annealing of the accumulative roll-bonding (ARB) processed Al alloy 1100[J]. Mater. Sci. Eng., 2008, A480: 148
[8] Min G H, Lee J M, Kang S B, et al.Evolution of microstructure for multilayered Al/Ni composites by accumulative roll bonding process[J]. Mater. Lett., 2006, 60: 3255
[9] Ohsaki S, Kato S, Tsuji N, et al.Bulk mechanical alloying of Cu-Ag and Cu/Zr two-phase microstructures by accumulative roll-bonding process[J]. Acta Mater., 2007, 55: 2885
[10] Chen M C, Hsieh H C, Wu W T.The evolution of microstructures and mechanical properties during accumulative roll bonding of Al/Mg composite[J]. J. Alloys Compd., 2006, 416: 169
[11] Chen M C, Kuo C W, Chang C M, et al.Diffusion and formation of intermetallic compounds during accumulative roll-bonding of Al/Mg alloys[J]. Mater. Trans., 2007, 48: 2595
[12] Jamaati R, Toroghinejad M R, Najafizadeh A.An alternative method of processing MMCs by CAR process[J]. Mater. Sci. Eng., 2010, A527: 2720
[13] Dehsorkhi R N, Qods F, Tajally M.Investigation on microstructure and mechanical properties of Al-Zn composite during accumulative roll bonding (ARB) process[J]. Mater. Sci. Eng., 2011, A530: 63
[14] Amirkhanlou S, Jamaati R, Niroumand B, et al.Fabrication and characterization of Al/SiCp composites by CAR process[J]. Mater. Sci. Eng., 2011, A528: 4462
[15] Jamaati R, Amirkhanlou S, Toroghinejad M R, et al.Comparison of the microstructure and mechanical properties of as-cast A356/SiC MMC processed by ARB and CAR methods[J]. J. Mater. Eng. Perform., 2012, 21: 1249
[16] Karimi M, Toroghinejad M R.An alternative method for manufacturing high-strength CP Ti-SiC composites by accumulative roll bonding process[J]. Mater. Des., 2014, 59: 494
[17] Alizadeh M, Beni H A.Strength prediction of the ARBed Al/Al2O3/B4C nano-composites using Orowan model[J]. Mater. Res. Bull., 2014, 59: 290
[18] Ahmadi A, Toroghinejad M R, Najafizadeh A.Evaluation of microstructure and mechanical properties of Al/Al2O3/SiC hybrid composite fabricated by accumulative roll bonding process[J]. Mater. Des., 2014, 53: 13
[19] Mara N A, Beyerlein I J.Review: effect of bimetal interface structure on the mechanical behavior of Cu-Nb fcc-bcc nanolayered composites[J]. J. Mater. Sci., 2014, 49: 6497
[20] Beyerlein I J, Mara N A, Wang J, et al.Structure-property-functionality of bimetal interfaces[J]. JOM, 2012, 64(10): 1192
[21] Zhang H, Toda H, Qu P C, et al.Three-dimensional fatigue crack growth behavior in an aluminum alloy investigated with in situ high-resolution synchrotron X-ray microtomography[J]. Acta Mater., 2009, 57: 3287
[22] Williams J J, Flom Z, Amell A A, et al.Damage evolution in SiC particle reinforced Al alloy matrix composites by X-ray synchrotron tomography[J]. Acta Mater., 2010, 58: 6194
[23] Chen Z J, Wu X, Hu H B, et al.Effect of individual layer shape on the mechanical properties of dissimilar Al alloys laminated metal composite sheets[J]. J. Mater. Eng. Perform., 2014, 23: 990
[24] Ma M, Huo P, Liu W C, et al.Microstructure and mechanical properties of Al/Ti/Al laminated composites prepared by roll bonding[J]. Mater. Sci. Eng., 2015, A636: 301
[25] Motevalli P D, Eghbali B.Microstructure and mechanical properties of Tri-metal Al/Ti/Mg laminated composite processed by accumulative roll bonding[J]. Mater. Sci. Eng., 2015, A628: 135
[26] Jamaati R, Toroghinejad M R.Effect of friction, annealing conditions and hardness on the bond strength of Al/Al strips produced by cold roll bonding process[J]. Mater. Des., 2010, 31: 4508
[1] LI Qian, SUN Xuan, LUO Qun, LIU Bin, WU Chengzhang, PAN Fusheng. Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance[J]. 金属学报, 2023, 59(3): 349-370.
[2] Wensheng XU, Wenzheng ZHANG. An Investigation of the Crystallography of Pearlites Nucleated on the Proeutectoid Cementite[J]. 金属学报, 2019, 55(4): 496-510.
[3] Feng QIU, Haotian TONG, Ping SHEN, Xiaoshuang CONG, Yi WANG, Qichuan JIANG. Overview: SiC/Al Interface Reaction and Interface Structure Evolution Mechanism[J]. 金属学报, 2019, 55(1): 87-100.
[4] Meijuan LI,Xiaolong LIU,Yuntao LIU,Mingyi ZHENG,Chen WANG,Dongfeng CHEN. TEXTURE EVOLUTION AND MECHANICAL PROPER-TIES OF Mg/Al MULTILAYERED COMPOSITE SHEETSPROCESSED BY ACCUMULATIVE ROLL BONDING[J]. 金属学报, 2016, 52(4): 463-472.
[5] Zhi JIANG,Yanhong TIAN,Su DING. SYNTHESIS OF Sn3.5Ag0.5Cu NANOPARTICLE SOLDERS AND SOLDERING MECHANISM[J]. 金属学报, 2016, 52(1): 105-112.
[6] LI Xiaolin, WANG Zhaodong. INTERPHASE PRECIPITATION BEHAVIORS OF NANOMETER-SIZED CARBIDES IN A Nb-Ti-BEARING LOW-CARBON MICROALLOYED STEEL[J]. 金属学报, 2015, 51(4): 417-424.
[7] ZHOU Huan, ZHANG Tiebang, WU Zeen, HU Rui, KOU Hongchao, LI Jinshan. FORMATION AND EVOLUTION OF PRECIPITATE IN TiAl ALLOY WITH ADDITION OF INTERSTITIAL CARBON ATOM[J]. 金属学报, 2014, 50(7): 832-838.
[8] CHENG Junye, ZHAO Aimin, CHEN Yinli, DONG Rui, HUANG Yao. EBSD STUDIES OF 30MnB5 HOT STAMPING STEEL TEMPERED AT DIFFERENT TEMPERATURE[J]. 金属学报, 2013, 49(2): 137-145.
[9] WEI Zhaozhao, MA Xiao, ZHANG Xinping. STUDY ON THE DISLOCATION STRUCTURE OF INTERPHASE INTERFACE AND MARTENSITE TRANSFORMATION CRYSTALLOGRAPHY IN Ni2 MnGa ALLOY[J]. 金属学报, 2013, 49(2): 187-198.
[10] WANG Xixia, GUO Hui, WANG Ding, BAI Yin, YANG Shanwu, HE Xinlai. INFLUENCE OF COHERENT AUSTENITE TWIN BOUNDARIES ON THE VARIANT SELECTION OF BAINITIC FERRITE IN Fe-C-Mn-Si STEELS[J]. 金属学报, 2012, 48(4): 385-392.
[11] SHI Zhangzhi ZHANG Wenzheng. DESIGNING Mg-Sn-Mn ALLOY BASED ON CRYSTALLOGRAPHY OF PHASE TRANSFORMATION[J]. 金属学报, 2011, 47(1): 41-46.
[12] MENG Yang ZHANG Wenzheng. CONVERTION AND ITS APPLICATION OF TWO KINDS OF DISCRIPTIONS ON THE ORIENTATION RELATIONSHIP[J]. 金属学报, 2010, 46(6): 647-656.
[13] WU Jing ZHANG Wenzheng. THE UNDERSTANDING AND CALCULATION OF MISORIENTATION BETWEEN VARIANTS BASED ON THE PHASE TRANSFORMATION[J]. 金属学报, 2009, 45(8): 897-905.
[14] CUI Guibin GUO Hui YANG Shanwu HE Xinlai. INFLUENCE OF INTERFACE BETWEEN GRAIN BOUNDARY FERRITE AND PRIOR AUSTENITE ON BAINITE TRANSFORMATION IN A LOW CARBON STEEL[J]. 金属学报, 2009, 45(6): 680-686.
[15] Liang Meng. STEPPED INTERFACE AND CRYSTAL ORIENTATION IN THE EUTECTIC STRUCTURE OF Cu-71.8 wt.% Ag ALLOY[J]. 金属学报, 2007, 43(8): 803-806 .
No Suggested Reading articles found!