|
|
Interface Characterization of the Mg/Al Laiminated Composite Fabricated by Accumulative Roll Bonding at Ambient Temperature |
Hai CHANG1( ),Mingyi ZHENG2,Guenter Brokmeier Heinz3,Weimin GAN4 |
1 National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China 2 School of Materials, Harbin Institute of Technology, Harbin 150001, China 3 Institute of Materials Science and Engineering, Clausthal Unviersity of Technology, Clausthal-Zellerfeld D38678, Germany 4 Helmholtz-Zentrum Geesthacht, Out Station at FRM2, Garching 85747, Germany |
|
Cite this article:
Hai CHANG,Mingyi ZHENG,Guenter Brokmeier Heinz,Weimin GAN. Interface Characterization of the Mg/Al Laiminated Composite Fabricated by Accumulative Roll Bonding at Ambient Temperature. Acta Metall Sin, 2017, 53(2): 220-226.
|
Abstract Mg and its alloy have large potential in weight reduction usages because of their low density. However, the relatively low strength and modulus hinder their widely applications. Accumulative roll bonding (ARB) is one kind of severe plastic deformation (SPD) process which can produce bulk ultra-fine-grained (UFG) metallic materials. In order to improve the strength, elastic modulus and corrosion resistance of Mg sheet, accumulative roll bonding was utilized to fabricate UFG Mg/Al laminated composites at ambient temperature in this work. Synchrotron radiation-based computer tomography, SEM and TEM were employed to characterize the global bonding condition and the interface structure of Mg/Al lam inated sheet ARBed after 3 cycles. No obvious cracks could be observed along the bonding interfaces during ARB, although small amount of tiny pores existed in some area. Mg17Al12 phase with thickness of 150 nm formed at Mg/Al interface after 3 cycles. There existed a definite orientation relationship between Mg17Al12 and Mg which is [11?1?]Mg17Al12//[12?10]Mg, (110)Mg17Al12//(1?011?)Mg. Nevertheless, the orientation relationship between Mg17Al12 and Al is not very obvious.
|
Received: 03 May 2016
|
Fund: Supported by National Natural Science Foundation of China (Nos.51201006 and 51071057) and Programme of Introducing Talents of Discipline to Universities (No.B12012) |
[1] | Valiev R Z, Islamgaliev R K, Alexandrov I V.Bulk nanostructured materials from severe plastic deformation[J]. Prog. Mater. Sci., 2000, 45: 103 | [2] | Valiev R Z, Estrin Y, Horita Z, et al.Producing bulk ultrafine-grained materials by severe plastic deformation[J]. JOM, 2006, 58(4): 33 | [3] | Saito Y, Tsuji N, Utsunomiya H, et al.Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process[J]. Scr. Mater., 1998, 39: 1221 | [4] | Saito Y, Utsunomiya H, Tsuji N, et al.Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process[J]. Acta Mater., 1999, 47: 579 | [5] | Lee S H, Saito Y, Tsuji N, et al.Role of shear strain in ultragrain refinement by accumulative roll-bonding (ARB) process[J]. Scr. Mater., 2002, 46: 281 | [6] | del Valle J A, Pérez-Prado M T, Ruano O A. Accumulative roll bonding of a Mg-based AZ61 alloy [J]. Mater. Sci. Eng., 2005, A410-411: 353 | [7] | Kwan C, Wang Z R, Kang S B.Mechanical behavior and microstructural evolution upon annealing of the accumulative roll-bonding (ARB) processed Al alloy 1100[J]. Mater. Sci. Eng., 2008, A480: 148 | [8] | Min G H, Lee J M, Kang S B, et al.Evolution of microstructure for multilayered Al/Ni composites by accumulative roll bonding process[J]. Mater. Lett., 2006, 60: 3255 | [9] | Ohsaki S, Kato S, Tsuji N, et al.Bulk mechanical alloying of Cu-Ag and Cu/Zr two-phase microstructures by accumulative roll-bonding process[J]. Acta Mater., 2007, 55: 2885 | [10] | Chen M C, Hsieh H C, Wu W T.The evolution of microstructures and mechanical properties during accumulative roll bonding of Al/Mg composite[J]. J. Alloys Compd., 2006, 416: 169 | [11] | Chen M C, Kuo C W, Chang C M, et al.Diffusion and formation of intermetallic compounds during accumulative roll-bonding of Al/Mg alloys[J]. Mater. Trans., 2007, 48: 2595 | [12] | Jamaati R, Toroghinejad M R, Najafizadeh A.An alternative method of processing MMCs by CAR process[J]. Mater. Sci. Eng., 2010, A527: 2720 | [13] | Dehsorkhi R N, Qods F, Tajally M.Investigation on microstructure and mechanical properties of Al-Zn composite during accumulative roll bonding (ARB) process[J]. Mater. Sci. Eng., 2011, A530: 63 | [14] | Amirkhanlou S, Jamaati R, Niroumand B, et al.Fabrication and characterization of Al/SiCp composites by CAR process[J]. Mater. Sci. Eng., 2011, A528: 4462 | [15] | Jamaati R, Amirkhanlou S, Toroghinejad M R, et al.Comparison of the microstructure and mechanical properties of as-cast A356/SiC MMC processed by ARB and CAR methods[J]. J. Mater. Eng. Perform., 2012, 21: 1249 | [16] | Karimi M, Toroghinejad M R.An alternative method for manufacturing high-strength CP Ti-SiC composites by accumulative roll bonding process[J]. Mater. Des., 2014, 59: 494 | [17] | Alizadeh M, Beni H A.Strength prediction of the ARBed Al/Al2O3/B4C nano-composites using Orowan model[J]. Mater. Res. Bull., 2014, 59: 290 | [18] | Ahmadi A, Toroghinejad M R, Najafizadeh A.Evaluation of microstructure and mechanical properties of Al/Al2O3/SiC hybrid composite fabricated by accumulative roll bonding process[J]. Mater. Des., 2014, 53: 13 | [19] | Mara N A, Beyerlein I J.Review: effect of bimetal interface structure on the mechanical behavior of Cu-Nb fcc-bcc nanolayered composites[J]. J. Mater. Sci., 2014, 49: 6497 | [20] | Beyerlein I J, Mara N A, Wang J, et al.Structure-property-functionality of bimetal interfaces[J]. JOM, 2012, 64(10): 1192 | [21] | Zhang H, Toda H, Qu P C, et al.Three-dimensional fatigue crack growth behavior in an aluminum alloy investigated with in situ high-resolution synchrotron X-ray microtomography[J]. Acta Mater., 2009, 57: 3287 | [22] | Williams J J, Flom Z, Amell A A, et al.Damage evolution in SiC particle reinforced Al alloy matrix composites by X-ray synchrotron tomography[J]. Acta Mater., 2010, 58: 6194 | [23] | Chen Z J, Wu X, Hu H B, et al.Effect of individual layer shape on the mechanical properties of dissimilar Al alloys laminated metal composite sheets[J]. J. Mater. Eng. Perform., 2014, 23: 990 | [24] | Ma M, Huo P, Liu W C, et al.Microstructure and mechanical properties of Al/Ti/Al laminated composites prepared by roll bonding[J]. Mater. Sci. Eng., 2015, A636: 301 | [25] | Motevalli P D, Eghbali B.Microstructure and mechanical properties of Tri-metal Al/Ti/Mg laminated composite processed by accumulative roll bonding[J]. Mater. Sci. Eng., 2015, A628: 135 | [26] | Jamaati R, Toroghinejad M R.Effect of friction, annealing conditions and hardness on the bond strength of Al/Al strips produced by cold roll bonding process[J]. Mater. Des., 2010, 31: 4508 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|