Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (4): 463-472    DOI: 10.11900/0412.1961.2015.00286
Orginal Article Current Issue | Archive | Adv Search |
TEXTURE EVOLUTION AND MECHANICAL PROPER-TIES OF Mg/Al MULTILAYERED COMPOSITE SHEETSPROCESSED BY ACCUMULATIVE ROLL BONDING
Meijuan LI1,Xiaolong LIU1,Yuntao LIU1,Mingyi ZHENG2,Chen WANG2,Dongfeng CHEN1()
1 Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China
2 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Cite this article: 

Meijuan LI,Xiaolong LIU,Yuntao LIU,Mingyi ZHENG,Chen WANG,Dongfeng CHEN. TEXTURE EVOLUTION AND MECHANICAL PROPER-TIES OF Mg/Al MULTILAYERED COMPOSITE SHEETSPROCESSED BY ACCUMULATIVE ROLL BONDING. Acta Metall Sin, 2016, 52(4): 463-472.

Download:  HTML  PDF(1619KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mg and its alloys are regarded as potential candidates to replace steel and other heavier materials in some applications due to low density and high specific strength. However, the application of Mg alloys is limited because of their low strength, poor formability and corrosion resistance. Grain refinement and Mg-Al composite have been applied successfully to improve the strength and formability of Mg alloys. The accumulative roll bonding (ARB) is one kind of severe plastic deformation process which can produce bulk ultra-fine grained metallic materials. In the present work, the ultra-fine grained alternative Mg/Al multilayered composite sheets were fabricated at room temperature by ARB process using commercial pure Mg and AA1050 Al sheets up to 3 cyc. Some of Mg/Al sheets after 3 cyc ARB were annealed at 200 ℃ for 15, 60 and 90 min, respectively. The microstructure of ARBed sheets were invesgated by OM and SEM. The global texture evolution of these ARBed sheets were measured by neutron diffraction. It is found that the grains in both Mg and Al layers are refined gradually with the increase of ARB cycles. Although the grains in the Mg layers didn't grow up obviously after annealing at 200 ℃ for different times, the homogeneity of the microstructure was improved. The Mg layers of ARBed sheets showed typical rolling texture which enhanced with the increase cycle of ARB process up to 2 cyc and decreased sligthly after 3 cyc. The Al layers exhibited a combination texture types of rolling and shear texture, including Copper, S, Brass and rotated cube (RC) texture components. After 200 ℃ annealing, the Mg layers remained typical rolling texture component and it's intensity enhanced significantly after 15 min annealing and kept stable during the following annealing processing. The Al layers maintained a combination of rolling and shear texture components, the intensity of rolling components became stronger after 15 min annealing, then decreased after 60 and 90 min annealing. The yield strength and tensile strength were improved while the ARB cycle increased.

Key words:  Mg/Al multilayered composite sheet      accumulative roll bonding (ARB)      bulk texture      neutron diffraction     
Received:  28 May 2015     
Fund: Supported by National Natural Science Foundation of China (Nos.11105231 and 11205248)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00286     OR     https://www.ams.org.cn/EN/Y2016/V52/I4/463

Fig.1  SEM images of Mg/Al multilayered composite sheet after primary preparation without accumulative rolling bonding (ARB) (a) and after 1 cyc (b), 2 cyc (c) and 3 cyc (d) of ARB
Fig.2  OM images of Mg layer in Mg/Al multilayered composite sheet after primary preparation (a, b) and ARBed for 1 cyc (c, d) , 2 cyc (e, f) and 3 cyc (g, h) at low (a, c, e, g) and high (b, d, f, h) magnifications
Fig.3  OM images of Mg layer in Mg/Al multilayered composite sheet after 3 cyc ARB and annealing at 200 ℃ for 15 min (a, b), 60 min (c, d) and 90 min (e, f) at low (a, c, e) and high (b, d, f) magnifications
Fig.4  (0002) pole figures of Mg layer in Mg/Al composite sheet after primary preparation (a) and ARBed for 1 cyc (b), 2 cyc (c) and 3 cyc (d) (RD—rolling direction, TD—transverse direction)
Fig.5  Orientation distribution function (ODF) figures of Al layer in Mg/Al composite sheet after primary preparation (a, a1, a2), ARBed for 1 cyc (b, b1, b2), 2 cyc (c, c1, c2) and 3 cyc (d, d1, d2) at Euler angles of 45° (a~d), 65° (a1~d1) and 90° (a2~d2) (RC—rotated cube)
Fig.6  Intensities of orientation lines α (a), β (b) and τ (c) of Al layer in ARBed Mg/Al multilayered composite sheet after different cycles (f(g)—orientation density, φ1, φ2, ?—Euler angles)
Cycle Yield strength Tensile strength
cyc MPa MPa
0 140 183
1 160 199
2 169 211
3 174 220
Table 1  Mechanical properties of ARBed Mg/Al multilayered composite sheet after different cycles at room temperature
Fig.7  (0002) pole figures of Mg layer in 3 cyc ARBed Mg/Al multilayered composite sheet (a) and after annealing at 200 ℃ for 15 min (b), 60 min (c) and 90 min (d)
Fig.8  ODF figures of Al layer in 3 cyc ARBed Mg/Al multilayered composite sheet (a, a1, a2) and after annealing at 200 ℃ for 15 min (b, b1, b2), 60 min (c, c1, c2) and 90 min (d, d1, d2) at Euler angles of 45° (a~d), 65° (a1~d1) and 90° (a2~d2)
[1] Yang Z, Li J P, Zhang J X, Lonmer G W, Robson J.Acta Metall, 2008; 21: 313
[2] Saito Y, Utsunomiya H, Tsuji N, Sakai T.Acta Mater, 1999; 47: 579
[3] Koizumi Y, Ueyama M, Tsuji N, Minamino Y, Ota K.J Alloys Compd, 2003; 355: 47
[4] Wang Y Q, Hou H L, Li Z Q.J Plast Eng, 2006; 5(13): 45
[4] (王耀奇, 侯红亮, 李志强. 塑性工程学报, 2006; 5(13): 45)
[5] Xu R C, Tang D, Ren X P, Wang X H, Wen Y H.Rare Met, 2007; 26: 230
[6] Yang D, Cizek P, Hodgson P, Wen C.Scr Mater, 2010; 62: 321
[7] Chang H, Zheng M Y, Gan W M, Xu C, Brokmeier H G.Rare Met Mater Eng, 2013; 42: 0441
[8] Chino Y, Mabuchi M.Scr Mater, 2009; 60: 447
[9] Tsuji N, Saito Y, Lee S H, Minamino Y.Adv Eng Mater, 2005; 5: 338
[10] Huang X, Tsuji N, Hansen N, Minamino Y.Mater Sci Eng, 2003; A340: 265
[11] Li B L, Tsuji N, Kamikawa N.Mater Sci Eng, 2006; A423: 331
[12] Kamikawa N, Sakai T, Tsuji N.Acta Mater, 2007; 55: 5873
[13] Sakai T, Hamada S, Saito Y.Scr Mater, 2001; 44: 2569
[14] Pérez-Prado M T, Del Valle J A, Ruano O A.Scr Mater, 2004; 51: 1093
[15] Zhan M Y, Li Y Y, Chen W P, Chen W D.J Mater Sci, 2007; 42: 9256
[16] Jiang L, Pérez-Prado M T, Gruber P A, Arzt E, Ruano O A, Kassner M E.Acta Mater, 2008; 56: 1228
[17] Terada D, Inoue S, Tsuji N.J Mater Sci, 2007; 42: 1673
[18] Del Valle J A, Pérez-Prado M T, Ruano O A. Mater Sci Eng, 2005; A410-411: 353
[19] Pérez-Prado M T, Del Valle J A, Ruano O A.Scr Mater, 2004; 50: 667
[20] Chang H, Zheng M Y, Wu K, Gan W M, Tong L B, Brokmeier H G.Mater Sci Eng, 2010; A527: 7176
[21] Ion S E, Humpreys F J, White S H.Acta Mater, 1982; 30: 1909
[22] Del Valle J A, Pérez-Prado M T, Ruano O A.Mater Sci Eng, 2003; A355: 68
[23] Barnett M R, Nave M D, Bettles C J.Mater Sci Eng, 2004; A386: 205
[24] Huang X S, Suzuki K, Watazu A, Shigematsu I, Satio N.J Alloys Compd, 2008; 457: 408
[25] Kamikawa N, Tsuji N, Minamino Y.Sci Technol Adv Mater, 2004; 5: 163
[26] Li S, Sun F, Li H.Acta Mater, 2010; 58: 1317
[27] Skrotzki W, Hunsche I, Huttenrauch J, Oertel C G, Brokmeier H G, Hoppel H W, Topic I.Textures and Microstructures, 2008; 8: 1
[28] Raei M, Toroghinejad M R, Jamaati R, Szpunar J A.Mater Sci Eng, 2010; A527: 7068
[29] Chang H.PhD Dissertation, Harbin Institute of Technology, 2011
[29] (常海. 哈尔滨工业大学博士学位论文, 2011)
[30] Humphreys F J, Hatherly M.Recrystallization and Related Annealing Phenomena. 2nd Ed., Oxford: Elsevier Science Ltd, 2004: 1
[31] Chang H, Zheng M Y, Xu C, Fan G D, Brokmeier H G, Wu K.Mater Sci Eng, 2012; A543: 249
[32] Gatti J R, Bhattacharjee P P.J Mater Eng Perform, 2014; 23: 4453
[1] LI Shilei, LI Yang, WANG Youkang, WANG Shengjie, HE Lunhua, SUN Guang'ai, XIAO Tiqiao, WANG Yandong. Multiscale Residual Stress Evaluation of Engineering Materials/Components Based on Neutron and Synchrotron Radiation Technology[J]. 金属学报, 2023, 59(8): 1001-1014.
[2] GAO Yubi, DING Yutian, LI Haifeng, DONG Hongbiao, ZHANG Ruiyao, LI Jun, LUO Quanshun. Effect of Deformation Rate on the Elastic-Plastic Deformation Behavior of GH3625 Alloy[J]. 金属学报, 2022, 58(5): 695-708.
[3] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[4] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[5] BI Zhongnan,QIN Hailong,DONG Zhiguo,WANG Xiangping,WANG Ming,LIU Yongquan,DU Jinhui,ZHANG Ji. Residual Stress Evolution and Its Mechanism During the Manufacture of Superalloy Disk Forgings[J]. 金属学报, 2019, 55(9): 1160-1174.
[6] Hailong QIN,Ruiyao ZHANG,Zhongnan BI,Lee Tung Lik,Hongbiao DONG,Jinhui DU,Ji ZHANG. Study on the Evolution of Residual Stress During Ageing Treatment in a GH4169 Alloy Disk[J]. 金属学报, 2019, 55(8): 997-1007.
[7] Zukun YANG, Changsheng ZHANG, Beibei PANG, Yanyan HONG, Fangjie MO, Zhao LIU, Guang'ai SUN. Effect of Initial Microstructures on the Macroscopic Mechanical Properties of Polycrystalline Beryllium[J]. 金属学报, 2018, 54(8): 1150-1156.
[8] Pingguang XU,Jiang YIN,Shuyan ZHANG. TENSILE DEFORMATION BEHAVIOR OF HYDROGEN CHARGED ULTRAHIGH STRENGTH STEEL STUDIED BY IN SITU NEUTRON DIFFRACTION[J]. 金属学报, 2015, 51(11): 1297-1305.
[9] ZHANG Meng, LIU Danmin, LIU Cuixiu, HUANG Qingzhen, WANG Shaobo, ZHANG Hu, YUE Ming. RESEARCH OF THE RELATIONSHIP BETWEEN PHASE TRANSITION PROCESS AND MAGNETIC PROPERTIES IN MAGNETIC REFRIGERATION MATERIAL Mn1.2Fe0.8P0.76Ge0.24[J]. 金属学报, 2013, 49(7): 783-788.
[10] JIANG Wenchun WOO Wanchuck WANG Bingying TU Shan–Tung . A STUDY OF RESIDUAL STRESS IN THE REPAIR WELD OF STAINLESS STEEL CLAD PLATE BY NEUTRON DIFFRACTION MEASUREMENT AND FINITE ELEMENT METHOD[J]. 金属学报, 2012, 48(12): 1525-1529.
[11] WU Erdong GUO Xiumei SUN Kai. NEUTRON DIFFRACTION STUDY OF DEUTERIUM OCCUPANCY OF DEUTERIDE OF LAVES PHASE ALLOY Ti0.68Zr0.32MnCrD3.0[J]. 金属学报, 2009, 45(5): 513-518.
[12] XU Pingguang; TOMOTA Yo. Progress in Materials Characterization Technique Based on in Situ Neutron Diffraction[J]. 金属学报, 2006, 42(7): 681-688 .
[13] PAN Hongge; DU Honglin; CHEN Changpin; HAN Xiufeng; YANG Fuming (Department of Materials Science and Engineering; Zhejiang University; Hangzhou 310027)(State Key Laboratory for Magnetism; Institute of Physics; The Chinese Academy of Sciences; Beijing 100080)(Institute of Chinese Atomic Energy; Beijing 102413). STRUCTURAL CHARACTERIZATION OF THE Y_3(Fe, Mo)_(29) INTERMETALLIC COMPOUND[J]. 金属学报, 1998, 34(5): 473-482.
[14] YANG Wangyue; SHENG Lizhen;SUN Zuqing; HUANG Yuanding; MAO Weimin (University of Science and Technology Beijing; Beijing 100083); ZHANG Baisheng; YE Chuntang (China Institute of Atomic Energy; Beijing 102413)(Manuscript received 1995-11-10; in revised form 1996-04-05). NEUTRON DIFFRACTION STUDY ON SITE OCCUPATION OF SUBSTITUTIONAL ELEMENTS AT SUBLATTICE IN Fe_3Al INTERMETALLICS[J]. 金属学报, 1996, 32(8): 799-804.
[15] YANG Wangyue;SUN Zuqing;HUANG Yuanding(University of Science and Technology Beijing) ZHANG Baisheng;DING Yongfan;YANG Jilian(China Institute of Atomic Energy;Beijing)(Manuscript received 29 June;1993). SITE OCCUPATION OF Cr ATOMS AT SUBLATTICE IN Fe_3Al-BASED INTERMETALLICS[J]. 金属学报, 1994, 30(3): 104-108.
No Suggested Reading articles found!