Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (2): 187-198    DOI: 10.3724/SP.J.1037.2012.00465
Current Issue | Archive | Adv Search |
STUDY ON THE DISLOCATION STRUCTURE OF INTERPHASE INTERFACE AND MARTENSITE TRANSFORMATION CRYSTALLOGRAPHY IN Ni2 MnGa ALLOY
WEI Zhaozhao, MA Xiao, ZHANG Xinping
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640
Cite this article: 

WEI Zhaozhao, MA Xiao, ZHANG Xinping. STUDY ON THE DISLOCATION STRUCTURE OF INTERPHASE INTERFACE AND MARTENSITE TRANSFORMATION CRYSTALLOGRAPHY IN Ni2 MnGa ALLOY. Acta Metall Sin, 2013, 49(2): 187-198.

Download:  PDF(4476KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ferromagnetic shape memory alloys (FSMAs), such as Ni2MnGa alloy, promise to be the keymaterials in manufacturing new type of actuator and sensor because of their high responsive speed and large strainoutput. In order to find the best functions of FSMAs, the understanding of their martensite transformationcrystallography is of enormous necessity and importance. In the present study, the topological model of martensite transformation was applied to the analysis of the interphase interfacial defect structure and crystallography ofmartensite transformation, such as the habit plane index and orientation relationship, in a Ni2MnGa alloy. The results obtained in this work were compared with the prediction from the phenomenological theory of martensite crystallography (PTMC). When the transformation dislocation b+1/+1D1 with smaller Burgers vectors and the lattice invariant deformation (LID) dislocation bL=0.186[111]M are activated to accommodate the coherency strain with a twist angle ω=3.2°, the habit plane is determined to be {0.691-0.117 0.713}p represented in the parent crystal frame, having an inclination angle Ψp=42.000°with the terrace plane (111)p. Furthermore, the orientation relationship between the parent and martensite phases is found to be, namely, {0.69-0.117 0.713}p 0.317° away from (101)M and [110]p about 3.200° away from [111]M, which are close to the calculated values based on the phenomenological theory of martensite crystallography. It is evident that the transformation dislocation with smaller Burgers vectors can be activated more easily during a martensite transformation. Additionally, for a range of twist ω, the alternative combination of disconnection and LID might be introduced in the topological model to obtain multiple predictions of martensite transformation crystallography, which could provide an explanation for the diversity and complexity of martensite transformation crystallography resulting from the different measured positions or external fields. Moreover, the parameters of the interfacial defect network, i.e., the line direction and the spacing of the interfacial defects, were also determined according to the topological model of martensite transformation, while the PTMC provides limited information of the microstructure of the martensite interface. It has been shown that the topological model of martensite transformation exhibits greater flexibility and advantage compared to the PTMC.

Key words:  martensite transformation      topological model      transformation crystallography      interphase interface structure      transformation dislocation     
Received:  04 August 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00465     OR     https://www.ams.org.cn/EN/Y2013/V49/I2/187

[1] Ullakko K, Huang J K, Kanter C, Kokorin V V, O’Handley R C. Appl Phys Lett, 1996; 69: 1966


[2] Dunand D C, Mullner P. Adv Mater, 2011; 23: 216

[3] Ma Y Q, Jiang C B, Li Y, Xu H B, Wang C P, Liu X J. Acta Mater, 2007; 55: 1533

[4] Zhu F Q, Yang F Y, Chien C L, Ritchie L, Xiao G, Wu G H. J Magn Magn Mater, 2005; 288: 79

[5] Sasso C P, Zheng P Q, Basso V, Mullner P, Dunand D C. Intermetallics, 2011; 19: 952

[6] Chernenko V, Kohl M, Doyle S, Mullner P, Ohtsuka M. Scr Mater, 2006; 54: 1287

[7] Long Y, Zhang Z Y, Wen D, Wu G H, Ye R C, Chang Y Q, Wan F R. J Appl Phys, 2005; 98: 046102

[8] Zhao R B. PhD Thesis, Shanghai Jiao Tong University, 2003.

(赵容斌. 上海交通大学博士论文, 2003)

[9] Wayman C M. Introduction to the Crystallography of Martensite Transformation. New York: MacMillan, 1964

[10] Cong D Y, Zhang Y D, Wang Y D, Humbert M, Zhao X, Watanabe T, Zuo L, Esling C. Acta Mater, 2007; 55: 4731

[11] Cong D Y, Zetterstrom P, Wang Y D, Delaplane R, Peng R L, Zhao X, Zuo L. Appl Phys Lett, 2005; 87: 111906

[12] Rigsbee J M, Aaronson H I. Acta Metall, 1979; 27: 351

[13] Qiu D, Zhang W Z. Acta Metall Sin, 2006; 42: 341

(邱冬, 张文征. 金属学报, 2006; 42: 341)

[14] Zhang W Z, Weatherly G C. Prog Mater Sci, 2005; 50: 181

[15] Weatherly G C, Zhang W Z. Metall Mater Trans, 1994; 25A: 1865

[16] Moritani T, Miyajima N, Furuhara T, Maki T. Scr Mater, 2002; 47: 193

[17] Pond R C, Celotto S, Hirth J P. Acta Mater, 2003; 54: 5385

[18] Pond R C, Ma X, Chai Y W, Hirth J P. Topological Modelling of Martensitic Transformations.

In: Nabarro F R N, Hirth J P, eds., Dislocation in Solids, Amsterdam: Elsevier, 2007: 225

[19] Ma X, Pond R C. J Mater Sci, 2011; 46: 4236

[20] Ma X, Pond R C. Mater Sci Eng, 2008; A481-482: 404

[21] Chiao Y H, Chen I W. Acta Metall et Mater, 1990; 38: 1163

[22] Otsuka K, Wayman C M. Shape Memory Materials. Cambridge: Cambridge University Press, 1998: 4

[23] Ogawa K, Kajiwara S. Philos Mag, 2004; 84: 2919

[24] Olson G B, Cohen M. Acta Metall, 1979; 27: 1907

[25] Bilby B A, Bullough R, Smith E. Proc Roy Soc, 1955; 231: 263

[26] Frank F C. The Resultant Content of Dislocation in an Arbitrary Intercrystalline Boundary,

In: Symposium on the Plastic Deformation of Crystalline Solid, Washington, D.C: U.S. Govt. Print. Off, 1950: 150

[27] Pond R C, Ma X, Hirth J P. Mater Sci Eng, 2006; A438-440: 109

[28] Zhang X M, Li D F, Xing Z S, Gautier E, Zhang J S, Simon A. Acta Metall et Mater, 1993; 41: 1693

 
[1] WANG Shihong,LI Jian,GE Xin,CHAI Feng,LUO Xiaobing,YANG Caifu,SU Hang. Microstructural Evolution and Work Hardening Behavior of Fe-19Mn Alloy Containing Duplex Austenite and ε-Martensite[J]. 金属学报, 2020, 56(3): 311-320.
[2] Zhaozhao WEI, Xiao MA, Xinping ZHANG. Topological Modelling of the B2-B19' Martensite Transformation Crystallography in NiTi Alloy[J]. 金属学报, 2018, 54(10): 1461-1470.
[3] Jintao SHI,Longgang HOU,Jinrong ZUO,Lin LU,Hua CUI,Jishan ZHANG. QUANTITATIVE ANALYSIS OF THE MARTENSITE TRANSFORMATION AND MICROSTRUCTURE CHARACTERIZATION DURING CRYOGENIC ROLLING OF A 304 AUSTENITIC STAINLESS STEEL[J]. 金属学报, 2016, 52(8): 945-955.
[4] Cunyu WANG,Ying CHANG,Jie YANG,Kunmin ZHAO,Han DONG. THE COMBINED EFFECT OF HOT DEFORMATION PLUS QUENCHING AND PARTITIONING TREATMENT ON MARTENSITE TRANSFORMATION OF LOW CARBON ALLOYED STEEL[J]. 金属学报, 2015, 51(8): 913-919.
[5] GU Xinfu ZHANG Wenzheng. A SIMPLE VECTOR ANALYSIS METHOD FOR MARTENSITE CRYSTALLOGRAPHY[J]. 金属学报, 2011, 47(2): 241-245.
[6] XU Mingzhou WANG Jianjun LIU Chunming. LOW TEMPERATURE DEFORMATION BEHAVIOR OF HIGH–NITROGEN NICKEL–FREE AUSTENITIC STAINLESS STEELS[J]. 金属学报, 2011, 47(10): 1335-1341.
[7] CHENG Xiaojuan WANG Hong KANG Guozheng DONG Yawei LIU Yujie. STUDY ON STRAIN--INDUCED MARTENSITE TRANSFORMATION OF 304 STAINLESS STEEL DURING RATCHETING DEFORMATION[J]. 金属学报, 2009, 45(7): 830-834.
[8] ZHANG Zhanling LIU Yongning YU Guang ZHU Jiewu HE Tao. MORPHOLOGY AND SUBSTRUCTURE OF JUJUBE--STONE--LIKE MARTENSITE IN ULTRAHIGH CARBON STEEL[J]. 金属学报, 2009, 45(3): 280-284.
[9] LIU Wei LI Zhibin WANG Xiang ZOU Hua WANG Lixin. EFFECT OF STRAIN RATE ON STRAIN INDUCED α'--MARTENSITE TRANSFORMATION AND MECHANICAL RESPONSE OF AUSTENITIC STAINLESS STEELS[J]. 金属学报, 2009, 45(3): 285-291.
[10] ZHENG Bin ZHOU Wei WANG Yinong QI Min. MARTENSITE TRANSFORMATION IN TiNi ALLOY UNDER COUPLING TEMPERATURE AND HIGH MAGNETIC FIELD USING LANDAU THEORY MODEL[J]. 金属学报, 2009, 45(1): 37-42.
[11] HUANG Jianyu;WU Yukun;HU Kuiyi;MENG Xiangmin Laboratory of Atomic Imaging of Solids and Laboratory of Rapidly Solidified Non-Equilibrium Alloys; Institute of Metal Research; Academia Sinica; Shenyang. EXTENSION OF SOLID SOLUBILITY INDUCED BY MECHANICAL ALLOYING IN Fe-Cu SYSTEM[J]. 金属学报, 1993, 29(2): 60-63.
[12] JING Xiaotian;LOU Bingzhe;CU Chenqing;SHEN Fusan Shaanxi Institute of Mechanical Engineering Xi'an Dept.of Materils;Shanxi Institute of Mechanical Engineering Xi'an 710048. TRANSFORMATION OF RETAINED AUSTENITE IN CARBURIZED CASE DURING FATIGUE CRACK GROWTH[J]. 金属学报, 1990, 26(1): 38-45.
No Suggested Reading articles found!