|
|
EFFECT OF FINISH COOLING TEMPERATURE ON MICROSTRUCTURE AND LOW TEMPERATURE TOUGHNESS OF Mn-SERIES ULTRA-LOW CARBON HIGH STRENGTH LOW ALLOYED STEEL |
GAO Guhui1, GUI Xiaolu1, AN Baifeng1, TAN Zhunli1, BAI Bingzhe2( ), WENG Yuqing2 |
1 Material Science and Engineering Research Center, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 2 Key Laboratory of Advanced Material, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 |
|
Cite this article:
GAO Guhui, GUI Xiaolu, AN Baifeng, TAN Zhunli, BAI Bingzhe, WENG Yuqing. EFFECT OF FINISH COOLING TEMPERATURE ON MICROSTRUCTURE AND LOW TEMPERATURE TOUGHNESS OF Mn-SERIES ULTRA-LOW CARBON HIGH STRENGTH LOW ALLOYED STEEL. Acta Metall Sin, 2015, 51(1): 21-30.
|
Abstract Recently, the steel plates used in the ship, pipeline and bridge generally required not only high strength but also excellent low temperature toughness. As a competitive candidate, the ultra-low carbon high strength low alloyed (HSLA) steel has been developed widely. The low temperature toughness depends on the microstructure of the steels. Therefore, the relationship of low temperature toughness and microstructure should be studied in detail. In the present work, the steel plates with 25 mm thickness after hot rolling were immediately water quenched to 550, 450 and 350 ℃(finish cooling temperature), respectively, and subsequently air cooled to room temperature. The effect of finish cooling temperature on the microstructure and low temperature toughness of Mn-series ultra-low carbon HSLA steel was investigated by SEM, TEM and crystallographic analysis. The results show that the granular bainite, lath bainite and martensite were obtained with finish cooling temperatures decreasing. There are three blocks with different orientations in a single packet for lath bainite microstructure in the sample with finish cooling temperature of 450 ℃, leading to the refinement of effective grain size and large amount of high-angle grain boundaries. Electron backscattered diffraction analyses of the cleavage crack path show that the bainite block boundaries can strongly hinder fracture propagation, and thus the refinement of bainite blocks can improve the low temperature toughness of Mn-series ultra-low carbon HSLA steel. Finally, the yield strength of 775 MPa and ductile-brittle transition temperature of -55 ℃can be achieved when the finish cooling temperature is 450 ℃.
|
|
|
Fund: Supported by Fundamental Research Funds for the Central Universities (No.2014JBM101 |
[1] |
Ghosh A, Das S, Chatterjee S, Rao Ramachandra P. Mater Charact, 2006; 56: 59
|
[2] |
Dong H. Sci China Technol Sci, 2012; 55: 1774
|
[3] |
Wang W, Shan Y Y, Yang K. Acta Metall Sin, 2007; 43: 578
|
|
(王 伟, 单以银, 杨 柯. 金属学报, 2007; 43: 578)
|
[4] |
You Y, Wang X M, Shang C J. Acta Metall Sin, 2012; 48: 1290
|
|
(由 洋, 王学敏, 尚成嘉. 金属学报, 2012; 48: 1290)
|
[5] |
Wang X Y, Pan T, Wang H, Su H, Li X Y, Cao X Z. Acta Metall Sin, 2012; 48: 401
|
|
(王小勇, 潘 涛, 王 华, 苏 航, 李向阳, 曹兴忠. 金属学报, 2012; 48: 401)
|
[6] |
Liu D S, Cheng B G, Luo M. Acta Metall Sin, 2011; 47: 1233
|
|
(刘东升, 程丙贵, 罗 咪. 金属学报, 2011; 47: 1233)
|
[7] |
Di G B, Liu Z Y, Hao L Q, Liu X H. Mater Mech Eng, 2008; 32(8): 1
|
|
(狄国标, 刘振宇, 郝利强, 刘相华. 机械工程材料, 2008; 32(8): 1)
|
[8] |
Zhou T, Yu H, Hu J, Wang S. Mater Sci Eng, 2014; A615: 436
|
[9] |
Xie Z, Fang Y, Han G, Guo H, Misra R D K, Shang C. Mater Sci Eng, 2014; A618: 112
|
[10] |
Wang C F, Wang M Q, Shi J, Hui W J, Dong H. Scr Mater, 2008; 58: 492
|
[11] |
Schino D A, Guarnschelli C. Mater Lett, 2009; 63: 1968
|
[12] |
Chen J, Tang S, Liu Z Y, Wang G D. Mater Sci Eng, 2013; A559: 241
|
[13] |
Sung H K, Shin S Y, Hwang B, Lee C G, Lee S. Metall Mater Trans, 2013; 44A: 294
|
[14] |
Nie W J, Shang C J, You Y, Zhang X B, Sundaresa S. Acta Metall Sin, 2012; 48: 797
|
|
(聂文金, 尚成嘉, 由 洋, 张晓兵, Sundaresa S. 金属学报, 2012; 48: 797)
|
[15] |
Morito S, Tanaka H, Konishi R, Furuhara T, Maki T. Acta Mater, 2003; 51: 1789
|
[16] |
Davis C L, King J E. Metall Mater Trans, 1994; 25A: 563
|
[17] |
Tomita Y, Okabayashi K. Metall Trans, 1986; 17A: 1203
|
[18] |
Naylor J P. Metall Trans, 1979; 10A: 861
|
[19] |
Morito S, Huang X, Furuhara T, Maki T, Hansen N. Acta Mater, 2006; 54: 5323
|
[20] |
Furuhara T, Kawata H, Morito S, Maki T. Mater Sci Eng, 2006; A431: 228
|
[21] |
Kitahara H, Ueji R, Tsuji N, Minamino Y. Acta Mater, 2006; 54: 1279
|
[22] |
Kawata H, Sakamoto K, Moritani T, Morito S, Furuhara T, Maki T. Mater Sci Eng, 2006; A438: 140
|
[23] |
Han S Y, Shin S Y, Seo C H, Lee H, Bae J H, Kim K, Lee S, Kim N J. Metall Mater Trans, 2009; 40A: 1851
|
[24] |
Shin S, Hwang B, Lee S, Kim N J, Ahn S. Mater Sci Eng, 2007; A458: 281
|
[25] |
Pickering F B, Gladman T. ISI Spec Rep, 1961; 81: 10
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|