Please wait a minute...
金属学报  2009, Vol. 45 Issue (2): 173-177    
  论文 本期目录 | 过刊浏览 |
Zr--4合金应力松弛过程中的热激活变形与动态应变时效
谭军1;李聪2;孙超1;应诗浩1;连姗姗3;阚细武3;冯可芹3
1. 中国核动力研究设计院核燃料及材料国家重点实验室; 成都 610041
2. 国核工程有限公司; 上海 200233
3. 四川大学制造科学与工程学院; 成都 610065
THERMALLY ACTIVATED DEFORMATION AND DYNAMIC STRAIN AGING OF Zr–4 ALLOY DURING STRESS RELAXATION
TAN Jun 1; LI Cong 2; SUN Chao 1; YING Shihao 1; LIAN Shanshan 3; KAN Xiwu 3; FENG Keqin 3
1. National Key Laboratory for Nuclear Fuel and Materials; Nuclear Power Institute of China; Chengdu 610041
2. State Nuclear Power Engineering Corp.; Ltd.; Shanghai 200233
3. School of Manufacture Science and Engineering; Sichuan University; Chengdu 610065
引用本文:

谭军 李聪 孙超 应诗浩 连姗姗 阚细武 冯可芹. Zr--4合金应力松弛过程中的热激活变形与动态应变时效[J]. 金属学报, 2009, 45(2): 173-177.
, , , , , , . THERMALLY ACTIVATED DEFORMATION AND DYNAMIC STRAIN AGING OF Zr–4 ALLOY DURING STRESS RELAXATION[J]. Acta Metall Sin, 2009, 45(2): 173-177.

全文: PDF(774 KB)  
摘要: 

采用应力松弛实验研究了Zr--4合金的热激活变形与动态应变时效现象. 结果表明, 合金在应力松弛过程中的塑性变形速率随松 弛时间的增加而减小, 塑性变形速率和松弛结束时的应力降低比率在623 K附近都会出现最小值. 对位错运动的激活体积分析发现, 锆合金中位错运动的速率控制机制是位错克服溶质原子的障碍, 动态应变时效会导致位错运动的激活体积增大, 623 K附近动态应变时效最为显著, 位错密度会对合金的动态应变时效产生影响.

关键词 Zr--4合金 应力松弛 热激活变形动态应变时效    
Abstract

The thermally activated deformation and dynamic strain aging (DSA) of Zr–4 were investigated by stress relaxation experiments in a broad temperature range. It is found that in the process of stress relaxation, the plastic deformation rate of the alloy decreases with the relaxation
time, and this rate and the stress reduction ratio at the end of relaxation exhibit a minimum value at about 623 K. The activation volume associated with dislocation motion is found from the relationship between the stress and relaxation time. A noticeable maximum value appears around 623 K when the activation volume plotted against the temperature, which suggests that at this temperature, DSA is most pronounced. The strain ependence of the activation volume is analyzed. The rate controlling deformation mechanism is identified as the overcoming of solute atoms by dislocations, and the dislocation density is found to have an influence on DSA.

Key wordsZr--4 alloy    stress relaxation    thermally activated deformation    dynamic strain    aging
收稿日期: 2008-05-12     
ZTFLH: 

TG111.7

 
基金资助:

国家自然科学基金资助项目50601024

作者简介: 谭军, 男, 1975年生, 助理研究员, 博士生

[1] Lee M H, Kim J H, Choi B K, Jeong Y H. J Alloys Compd,2007; 428: 99
[2] Ahn J S, Nam S W. Mater Lett, 1990; 9: 413
[3] Lee K W, Kim S K, Kim K T, Hong S I. J Nucl Mater,2001; 295: 21
[4] Thorpe W R, Smith I O. J Nucl Mater, 1978; 78: 49
[5] Armas A F, Alvarez I A, Moscato G. Scr Mater, 1996; 34:281
[6] Nemat–Nasser S, Li Y L. Acta Mater, 1998; 46: 565
[7] Zhang J S. Strength of Materials. Harbin: Harbin Insti-tute of Technology Press, 2004: 52
张俊善. 材料强度学. 哈尔滨: 哈尔滨工业大学出版社, 2004: 52)
[8] Guo Y B, Tang Z P, Cheng J Y. Acta Mech Solida Sin,2002; 23: 249
(郭扬波, 唐志平, 程经毅. 固体力学学报, 2002; 23: 249)
[9] Kocks U F, Argon A S, Ashby M F. Prog Mater Sci, 1975;19: 112
[10] Regazzoni G, Kocks U F, Follansbee P S. Acta Metall, 1987; 35: 2865
[11] Soo P, Higgins G T. Acta Metall, 1968; 16: 177
[12] Hong S I, Ryu W S, Rim C S. J Nucl Mater, 1984; 120: 1
[13] Schoeck G. Phys Status Solidi, 1965; 8: 499
[14] Evans A G, Rawlings R D. Phys Status Solidi, 1969; 34: 9

[1] 江河,董建新,张麦仓,姚志浩,杨静. 服役条件下镍基高温合金应力松弛微观机制[J]. 金属学报, 2019, 55(9): 1211-1220.
[2] 史俊勤,孙琨,方亮,许少锋. 含水条件下单晶Cu的应力松弛及弹性恢复[J]. 金属学报, 2019, 55(8): 1034-1040.
[3] 何卫锋, 李翔, 聂祥樊, 李应红, 罗思海. 钛合金薄壁构件激光冲击残余应力稳定性研究[J]. 金属学报, 2018, 54(3): 411-418.
[4] 李冬冬, 钱立和, 刘帅, 孟江英, 张福成. Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响[J]. 金属学报, 2018, 54(12): 1777-1784.
[5] 郭鹏程, 钱立和, 孟江英, 张福成. 高锰奥氏体TWIP钢的单向拉伸与拉压循环变形行为*[J]. 金属学报, 2014, 50(4): 415-422.
[6] 冯瑞, 张美汉, 陈乃录, 左训伟, 戎咏华. 应力松弛对应变诱发马氏体相变影响的有限元模拟*[J]. 金属学报, 2014, 50(4): 498-506.
[7] 蔡玉龙, 符师桦, 王玉辉, 田成刚, 高越, 程腾, 张青川. 基于三维数字图像相关法的5456铝镁合金锯齿形屈服研究[J]. 金属学报, 2014, 50(12): 1491-1497.
[8] 曹铁山, 方旭东, 程从前, 赵杰. 应力松弛方法研究2种HR3C耐热钢的高温蠕变行为[J]. 金属学报, 2014, 50(11): 1343-1349.
[9] 韩国明,崔传勇,谷月峰,胡壮麒,孙晓峰. 一种镍基高温合金PLC效应的温度依赖性研究[J]. 金属学报, 2013, 49(10): 1243-1247.
[10] 聂文金 尚成嘉 吴圣杰 施培建 程俊杰 张晓兵. Nb对奥氏体热变形后等温回复的影响[J]. 金属学报, 2012, 48(7): 775-781.
[11] 符师桦 程腾 张青川 曹鹏涛 胡琦. 5456铝合金PLC效应的两种临界机制研究[J]. 金属学报, 2012, 48(12): 1453-1458.
[12] 田成刚 崔传勇 谷月峰 孙晓峰. 固溶处理对Ni-Co基高温合金反常动态应变时效的影响[J]. 金属学报, 2012, 48(10): 1223-1228.
[13] 江慧丰 陈学东 范志超 董杰 姜恒 陆守香. 动态应变时效对316L不锈钢疲劳蠕变行为的影响[J]. 金属学报, 2009, 45(3): 326-330.
[14] 张继旺 鲁连涛 张卫华. 微粒子喷丸中碳钢疲劳性能分析[J]. 金属学报, 2009, 45(11): 1378-1383.
[15] 陈立佳; 吴崴; P.K.Liaw . 3种高温合金的蠕变-疲劳交互作用行为及寿命预测[J]. 金属学报, 2006, 42(9): 952-958 .