Please wait a minute...
金属学报  2009, Vol. 45 Issue (1): 119-123    
  论文 本期目录 | 过刊浏览 |
2D Cf/Mg-2.0Re-0.2Zr复合材料的尺寸稳定性
宋美慧1;宋坚2;陈国钦1;王宁1;武高辉1
1  哈尔滨工业大学材料科学与工程学院; 哈尔滨 150001
2  中国空间技术研究院研究发展部; 北京 100094
DIMENSIONAL STABILITY OF 2D Cf/Mg--2.0Re--0.2Zr COMPOSITES
SONG Meihui 1;SONG Jian2;CHEN Guoqin1;WANG Ning1; WU Gaohui1
1 College of Material Science & Engineering; Harbin Institute of Technology; Harbin 150001
2 Research and Development Department; Chinese Academy of Space Technology; Beijing 100094
引用本文:

宋美慧 宋坚 陈国钦 王宁 武高辉 . 2D Cf/Mg-2.0Re-0.2Zr复合材料的尺寸稳定性[J]. 金属学报, 2009, 45(1): 119-123.
, , , , . DIMENSIONAL STABILITY OF 2D Cf/Mg--2.0Re--0.2Zr COMPOSITES[J]. Acta Metall Sin, 2009, 45(1): 119-123.

全文: PDF(841 KB)  
摘要: 

采用压力浸渗法制备碳纤维织物(2D Cf)及单向碳纤维(1D Cf)增强镁合金复合材料, 测试了两种复合材料在 50---350 ℃范围内的热膨胀行为. 结果表明, 2D Cf/镁合金复合材料(简称2D)平面内不同方向的平均热膨胀系数均随温度升高不断降低. 从50到350℃, 0°/90°方向的平均热膨胀系数由 4.03×10-6-1降至1.83×10-6-1; 45°方向的平均热膨胀系数由4.53×10-6-1降至2.31×10-6-1. 根据推导公式可以准确计算2D增强复合材料20---150 ℃范围内0°/90°方向的平均热膨胀系数. 20---150 ℃热循环测试结果表明, 2D复合材料具有较好的尺寸稳定性, 在热循环过程中存在应变滞后现象, 其残余塑性变形主要是基体合金在热应力作用下产生的塑性变形, 并且从第2次热循环起, 复合材料在热循环中产生的净应变不随热循环次数增加而变化.

关键词 碳纤维织物/Mg-2.0Re-0.2Zr合金复合材料热膨胀尺寸稳定性    
Abstract

Thermal expansion behaviors of carbon fabric/Mg-2.0Re-0.2Zr (2D) and carbon fabric/Mg-2.0Re-0.2Zr (1D) composites fabricated by squeeze casting technology were measured, and the results show that the anisotropy is obviously improved by using carbon fabric. Coefficient of thermal expansion (CTEs) of 0°/90° of 2D composite between 50 and 350 ℃ changes from 4.03×10-6-1 to 1.83×10-6-1, and the 45° CTEs decrease from 4.53×10-6-1 to 2.31×10-6-1. CTEs of  0°/90°of 2D composite between 20 and 150 ℃ are in a good agreement with the model derived by the authors. Dimensional stabilities of composites were evaluated by thermal cycling method between 20 to 150 ℃. Strain hysteresis of 2D composite is observed during thermal cycling, and residual stain is mainly matrix plastic deformation generated by thermal stress. The net strain shows little change with increasing cycling number, which demonstrated 2D composite has good dimensional  stability.

Key wordscarbon fabric/Mg-2.0Re-0.2Zr alloy composite    thermal expansion    dimensional stability
收稿日期: 2008-04-21     
ZTFLH: 

TB331

 
作者简介: 宋美慧, 女, 1981年生, 博士生

[1] Li K, Pei Z L, Gong J, Shi N L, Sun C. Acta Metall Sin, 2007; 43: 1281
(李坤, 裴志亮, 宫骏, 石南林, 孙超. 金属学报, 2007; 43: 1281)
[2] Goddard D M. Trans Am Foundrymen′s Soc, 1986; 94: 667
[3] Degischer H P. Mater Des, 1997; 18: 221
[4] Armin F, Eckhard P, J¨org W. Adv Eng Mater, 2002; 2:471
[5] Goddard D M. Met Prog, 1984; 125: 49
[6] Carolin K, Wolgang S, Markus O, Robert F S. Adv Eng Mater, 2000; 6: 327
[7] Wu F, Zhu J. Acta Metall Sin, 1998; 34: 449
(武凤, 朱静. 金属学报, 1998; 34: 449)
[8] Hufenbach W, Andrich M, Langkamp A, Czulak A. J Mater Process Technol, 2006; 175: 218
[9] Russell S M, Todd R, Papakyriacou M. Surf Interface Anal, 2005; 37: 336
[10] Russell S M, Todd R, Papakyriacou M. Mater Sci Eng, 2005; A397: 249
[11] McCartney L N, Kelly A. Compos Sci Technol, 2007; 67: 646
[12] Kor´ab J, ˇStef´anik P, Kavecky ˇS, ˇSebo P, Korb G. Composites, 2002; 33A: 133
[13] ˇ Stef´anik P, Kavecky ˇ S, Korb G, Groboth G, ˇ Sebo P. J Mater Sci Lett, 1997; 16: 392
[14] Wolff E G, Min B K, Kural M H. J Mater Sci, 1985; 20: 1141
[15] Russell S M, Todd R I, Papakyriacou M. J Mater Sci, 2006; 41: 6228
[16] Korb G, Kor´ab J, Groboth G. Composites, 1998; 29A: 1563
[17] Wang H H, Li X G, Fei Z M. Aerosp Mater Technol, 1995; 25(1): 41
(王鸿华, 李贤淦, 费铸铭. 宇航材料工艺, 1995; 25(1): 41)
[18] Taylor R E. Int J Thermophys, 1991; 12: 723
[19] Hufenbach W, Andrich M, Langkamp A, Czulak A. J Mater Process Technol, 2006; 175: 218
[20] Rupnowski P, Gentz M, Sutter J K, Kumosa M. Composites, 2005; 36A: 327
[21] Wang N. Master Degree Dissertation, Harbin Institute of Technology, 2007
(王 \ \ 宁. 哈尔滨工业大学硕士学位论文, 2007)
[22] Rojstaczer S, Cohn D, Marom G. J Mater Sci Lett, 1985; 4: 1233
[23] Rajendra U, Chawla K K. Compos Sci Technol, 1994; 50: 13
[24] Karadeniz Z H, Kumlutas D. Compos Struct, 2007; 78: 1
[25] Kelly A, Stearn R J, McCartney L N. Compos Sci Technol, 2006; 66: 154
[26] Zhang Q, Wu G H, Jiang L T, Chen G Q. Mater Chem Phys, 2003; 81: 780

[1] 蓝春波,梁家能,劳远侠,谭登峰,黄春艳,莫羡忠,庞锦英. 冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为[J]. 金属学报, 2019, 55(6): 701-708.
[2] 武高辉, 乔菁, 姜龙涛. Al及其复合材料尺寸稳定性原理与稳定化设计研究进展[J]. 金属学报, 2019, 55(1): 33-44.
[3] 韦昭召, 马骁, 张新平. NiTi合金B2-B19′马氏体相变晶体学的拓扑模拟研究[J]. 金属学报, 2018, 54(10): 1461-1470.
[4] 王长军,梁剑雄,刘振宝,杨志勇,孙新军,雍岐龙. 亚稳奥氏体对低温海工用钢力学性能的影响与机理*[J]. 金属学报, 2016, 52(4): 385-393.
[5] 胡强 曾燮榕 钱海霞 谢胜辉 盛洪超. 铁基块体非晶合金玻璃形成能力与特征自由体积的关系[J]. 金属学报, 2012, 48(11): 1329-1334.
[6] 宋晓艳 孙中华. 负热膨胀反钙钛矿锰氮化合物的研究综述[J]. 金属学报, 2011, 47(11): 1362-1371.
[7] 张从阳 朱洁 张茂才. Mn3(Cu1-xGex)N的负热膨胀现象[J]. 金属学报, 2009, 45(1): 97-101.
[8] 彭德林; 沈军; 孙剑飞; 陈玉勇 . 氢对锆基块体非晶合金热膨胀系数和有效原子作用势的影响[J]. 金属学报, 2005, 41(8): 835-838 .
[9] 邢奇凤; 邢献然; 杜凌; 于然波; 陈骏; 邓金侠; 罗君 . 水热法合成负热膨胀材料ZrW2O8[J]. 金属学报, 2005, 41(6): 669-672 .
[10] 王连文; 冼爱平; 邵涵如 . r射线吸收法测量液态金属In的密度[J]. 金属学报, 2004, 40(6): 643-.
[11] 陈骏; 许晓伟 . 立方氮化硼的热膨胀性[J]. 金属学报, 2003, 39(9): 952-954 .
[12] 陈骏; 邢献然; 邓金侠 . Pb1-xSrxTiO3固溶化合物及其热膨胀性[J]. 金属学报, 2003, 39(7): 771-774 .
[13] 潘涛; 杨志刚; 白秉哲; 方鸿生 . 钢中夹杂物与奥氏体基体热膨胀系数差异导致的热应力和应变能研究[J]. 金属学报, 2003, 39(10): 1037-1042 .
[14] 凤仪;应美芳;魏光霞;张晓君;王成福. 碳纤维不同分布的C_F/Cu复合材料的热膨胀系数[J]. 金属学报, 1994, 30(21): 432-434.
[15] 卢志超;鲜于泽;沈保根;吕曼祺. Fe-Zr-B纳米晶合金的热膨胀和磁性研究[J]. 金属学报, 1994, 30(18): 265-269.