Please wait a minute...
金属学报  2007, Vol. 43 Issue (10): 1048-1052     
  论文 本期目录 | 过刊浏览 |
高频电流在线加热对不锈钢/碳钢复合带组织与性能的影响
祖国胤; 李红斌; 李 兵; 于九明; 温景林
东北大学材料与冶金学院; 沈阳 110004
引用本文:

祖国胤; 李红斌; 李兵; 于九明; 温景林 . 高频电流在线加热对不锈钢/碳钢复合带组织与性能的影响[J]. 金属学报, 2007, 43(10): 1048-1052 .

全文: PDF(526 KB)  
摘要: 根据高频电流集肤效应和邻近效应的特点,自制了一套高频电流在线加热复合轧制装置,在该装置上进行了不锈钢/碳钢复合带的制备工艺研究。根据温度场数值模拟的结果确定了高频电流的主要参数,结合常规热轧复合的对比实验,分析了高频电流在线加热工艺对不锈钢/碳钢复合带的组织与性能的影响。结果表明:高频电流在线加热工艺可在25~30%的压下率下制备出高性能的不锈钢/碳钢复合带,复合带的硬化程度较低,避免了常规热轧复合带在高温退火后界面出现的脆性“贫碳层”,退火后复合带的延伸率可达40%以上。高频电流在线加热工艺有效解决了各阶段母材氧化的问题,不锈钢表面的氧化程度很低。该工艺的加热区温度分布合理,具有加热速度快,热效率高的突出特点。
关键词 高频电流在线加热工艺不锈钢/碳钢复合带    
Abstract:According to the characteristic skin effect and proximity effect of high-frequency current, author himself manufactured a set of high-frequency current heating on-line/roll-bonding device by which the preparation technology of stainless steel/carbon steel cladding strip was studied. The main parameter of high-frequency current was determined according to the results of simulation of temperature field, analyzed the effect of high-frequency current heating on-line process on the microstructure and properties of stainless steel/carbon steel cladding strip by comparing the contrast experiments of general hot rolling bonding. The results showed that the stainless steel/carbon steel cladding strip with high properties can be prepared by the high-frequency current heating on-line process with the reduction rate of 25~30%, and the work-hardening of cladding strip is low, so it can avoid brittle ”carbon-poor layer” occurring on the interface of general hot-rolled cladding strip after high temperature annealing, and the elongation of cladding strip can exceed 40% after annealing. The oxidation problem of base metal under all the stages was solved under high-frequency current heating on-line process, and there was little oxidation on the surface of stainless steel. The distribution of temperature on zone of heating is reasonable on this technology, so it has the predominant characteristic of quick heating and high heat efficiency.
Key wordshigh-frequency current heating on-line process    stainless steel/carbon steel cladding strip    skin effe
收稿日期: 2006-11-22     
ZTFLH:  TB331  
[1]Yu J M,Xiao Y Z,Wang Q J,Fang X Y,Cui G Z.J Chin Mater Res,2000;14:13 (于九明,孝云祯,王群骄,方晓英,崔光洙.材料研究学报,2000;14:13)
[2]Padron T,Khan T I,Kabir M J.Mater Sci Eng,2004; A385:221
[3]Mizuhara Y,Masahashi N.Mater Trans,2000;41:429
[4]Paschold R.Svetsaren,2001;56:63
[5]Saji N,Nagai S,Tsuchiya K,Asakura H,Obata M.Phys- ica,2001;354C:148
[6]Xu X M,Zhang W Z,Zong J F,Hou Y W.J Iron Steel Res,2004;16:37
[7]Jauhari I,Ogiyama H,Tsukuda H.Mater Sci Res Int, 2003;9:156
[8]Kacar R,Acarer M.J Mater Process Technol,2004;152: 92
[9]Huang L Z.The Principle of Electromagnetic Field.Bei- jing:People's Education Press,1980:307 (黄礼镇.电磁场原理.北京:人民教育出版社,1980:307)
[10]Ni G Z.The Principle of Engineering Electromagnetic Field.Beijing:Higher Education Press,2002:190 (倪光正.工程电磁场原理.北京:高等教育出版社,2002:190)
[11]Xiao N,Chen H G,Sun S G.Wang S G,Wang S J,Cui M,Yu J M.Acta Metall Sin,2006;42:989 (肖楠,陈海耿,孙世刚,王成军,崔苗,于九明.金属学报,2006;42:989)
[12]Bouquet F,Cuntz J M,Coddet C.J Adhes Sci Technol, 1992;6:236
[13]Yamasaki K,Sugano T.J Vac Soc Jpn,1980;23:29p
[1] 郭星星 帅美荣 楚志兵 李玉贵 谢广明. 不锈钢复合钢筋近界面微观组织演变及元素扩散动力学[J]. 金属学报, 0, (): 0-0.
[2] 谢丽文 张立龙 刘艳艳 张明阳 王绍钢 焦大 刘增乾 张哲峰. 不锈钢纤维增强镁基仿生复合材料制备与力学性能[J]. 金属学报, 0, (): 0-0.
[3] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[4] 张雷, 施韬, 黄火根, 张培, 张鹏国, 吴敏, 法涛. 铀基非晶复合材料的相分离与凝固序列研究[J]. 金属学报, 2022, 58(2): 225-230.
[5] 刘悦, 汤鹏正, 杨昆明, 沈一鸣, 吴中光, 范同祥. 抗辐照损伤金属基纳米结构材料界面设计及其响应行为的研究进展[J]. 金属学报, 2021, 57(2): 150-170.
[6] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[7] 吕钊钊,祖宇飞,沙建军,鲜玉强,张伟,崔鼎,严从林. 含Cu界面层碳纤维增强铝基复合材料制备工艺及其力学性能研究[J]. 金属学报, 2019, 55(3): 317-324.
[8] 杨诚智, 关玉, 陈世坤, 苏慧兰, 张荻. 蝶翅精细分级结构金属纳米复合材料的研究进展[J]. 金属学报, 2019, 55(1): 101-108.
[9] 陶然, 赵玉涛, 陈刚, 怯喜周. 电磁场下原位合成纳米ZrB2 np/AA6111复合材料组织与性能研究[J]. 金属学报, 2019, 55(1): 160-170.
[10] 耿林, 吴昊, 崔喜平, 范国华. 基于箔材反应退火合成的TiAl基复合材料板材研究进展[J]. 金属学报, 2018, 54(11): 1625-1636.
[11] 张荻, 苑孟颖, 谭占秋, 熊定邦, 李志强. 金刚石/Cu复合界面导热改性及其纳米化研究进展[J]. 金属学报, 2018, 54(11): 1586-1596.
[12] 张海峰, 闫海乐, 贾楠, 金剑锋, 赵骧. Cu/Ti纳米层状复合体塑性变形机制的分子动力学模拟研究[J]. 金属学报, 2018, 54(9): 1333-1342.
[13] 丁浩, 崔喜平, 许长寿, 李爱滨, 耿林, 范国华, 陈俊锋, 孟松鹤. 连续玄武岩纤维增强铝基层状复合材料的制备与力学特性[J]. 金属学报, 2018, 54(8): 1171-1178.
[14] 燕云程, 丁宏升, 宋尽霞, 康永旺, 陈瑞润, 郭景杰. 工艺参数对电磁冷坩埚定向凝固Nb-Si基合金固液界面的影响[J]. 金属学报, 2014, 50(9): 1039-1045.
[15] 刘晓波, 赵宇光. 不同制备条件下原位Mg2Si/Al复合材料的组织演变和耐磨性*[J]. 金属学报, 2014, 50(6): 753-761.