Please wait a minute...
金属学报  2006, Vol. 42 Issue (7): 739-744     
  论文 本期目录 | 过刊浏览 |
多向锻造工艺对AZ80镁合金显微组织和力学性能的影响
郭强 严红革 陈振华 张辉
湖南大学材料科学与工程学院; 长沙 410082
Effect of Multiple Forging Process on the Microstructure and Properties of Magnesium Alloy
GUO Qiang; YAN Hongge; CHEN Zhenhua; ZHANG Hui
School of Materials Science and Engineering; Hunan University; Changsha 410082
引用本文:

郭强; 严红革; 陈振华; 张辉 . 多向锻造工艺对AZ80镁合金显微组织和力学性能的影响[J]. 金属学报, 2006, 42(7): 739-744 .
, , , . Effect of Multiple Forging Process on the Microstructure and Properties of Magnesium Alloy[J]. Acta Metall Sin, 2006, 42(7): 739-744 .

全文: PDF(1016 KB)  
摘要: 本文研究了多向锻造工艺对镁合金组织和性能的影响。实验表明:通过多向锻造大塑性变形工艺成功制备出晶粒度在1~2µm镁合金锻坯,材料组织均匀,机械性能得到很大提高。形变诱导晶粒细化是主要的晶粒细化机制,同时也是一种非形核长大过程。与单轴成形工艺相比,多向锻造大变形下材料内部易产生交错变形带,有利于组织细化。材料晶粒细化过程存在一临界应变量 εc( 2<εc<2.4),当实际变形量εx超过临界变形量εc时,材料基本为动态再结晶细晶组织,进一步细化变得困难。铸态试样室温拉伸断口为准解理断裂加少量剪切断裂,锻后材料断口出现大量细小韧窝,随应变量的增加,细小韧窝数目增多,分布趋向均匀,材料延性相对较大。
关键词 AZ80镁合金多向锻造晶粒细化显微组织    
Abstract:The effect of multiple forging process on the microstructure and properties of magnesium alloy was investigated in the present paper. The results show that using the method of multiple forging, a homogeneous microstructure with ultrafine grains(1~2µm)can be attained and mechanical properties of alloy can be significantly improved. The dynamic formation of new grains during the deformation can result from a series of strain-induced continuous reactions that are essentially similar to continuous dynamic recrystallization and the intercrossing deformation bands developed in the coarse grains are beneficial for grain refinement. The microstructure with fine dynamic recrystallized grains can be attained when the applied total strain εx exceeds the critical strain εc which is in the rage of 2~2.4. After that, it is difficult to get more grain refinement further. Fractography demonstrates that the as-cast alloys’ tensile fracture consists of quasi-cleavage fracture mixed a little shear fracture and the microstructure morphologies of the alloy after forging are ductile dimple. At the same time, the dimples increase and exist more homogeneously with the increase of strain.
Key wordsAZ80 magnesium alloy    multiple forging    grain refinement    microstructure    mechanical properties
收稿日期: 2005-10-09     
ZTFLH:  TG319  
[1] Chen Z H.Wrought Magnesium Alloy.Beijing:Chemical Industry Press,2005 (陈振华.变形镁合金.北京:化学工业出版社,2005)
[2] Valiev R Z,Islamgalie R K,Alexandrov I V. Prog Mater Sci, 2000; 45: 103
[3] Zhao X, Gao Y W, Nan Y, Jing T F. Mater Rev, 2003; 17: 5 (赵新,高聿为,南云,荆天辅.材料导报,2003;17:5)
[4] Mabuchi M,Iwasaki H,Yanase K, Higashi K. Scr Mater,1997; 36: 681
[5] Watanabe H, Mukai T, Ishikawa K. Scr Mater, 2002; 46:851
[6] Koike J. Mater Sci Forum, 2003; 419-422: 189
[7] Belyakov A, Gao W, Miura H, Sakai T.Metalll Mater Trans, 1998; 29A: 2957
[8] Belyakov A,Sakai T, Miura H. Mater Trans, 2000; 41:476
[9] Belyakov A,Sakai T,Miura H,Tsuzaki K.Philos Mag,2001; 81A: 2629
[10] Sitdikov O, Goloborodko A, Sakai T,Miura H, Kaibyshev R. Mater Sci Forum, 2003; 426-432: 381
[11] Sitdikov O, Sakai T,Goloborodko A, Miura H,Kaibyshev R. Mater Trans,2004;45:2232
[12] Sitdikov O,Sakai T,Goloborodko A,Miura H, Kaibyshev R. Mater Sci Forum, 2004; 467-470: 421
[13] Sitdikov O,Sakai T,Goloborodko A,Miura H. Scr Mater, 2004; 51: 175
[14] Zhang T J,Zhang X M, Tian F, Li Z K, Yin J O. Rare Met Mater Eng, 2001; 30: 335 (张廷杰,张小明,田 锋,李中奎,殷京欧.稀有金属材料与 工程,2001;30:335)
[15] Zhang X M,Zhang T J,Tian F,Li Z K,Ma G L,Zhou J. Rare Met Mater Eng, 2003; 32: 372 (张小明,张廷杰,田锋,李中奎,马光来,周建.稀有金 属材料与工程,2003;32:372)
[16] Zhang X M, Zhang T J, Ma G L, Tian F, Li Z K, zhou L.Trans Nonferr Met Soc Chin, 2003; 13: 645
[17] Zhou J, Zhang T J, Zhang X M, Ma G L, Tian F, Zhou L. Rare Met Mater Eng, 2004; 33: 827 (周建,张廷杰,张小明,马光来,田锋,周廉.稀有金 属材料与工程,2004;33:827)
[18] Perez-Prado M T, del Valle J A,Contreras J M, Ruano O A. Scr Mater, 2004; 50: 661
[19] Perez-Prado M T, del Valle J A, Ruano O A. Scr Mater,2004; 50: 667
[20] Xing J,Yang X Y,Miura H, Sakai T. Mater Sci Forum,2005; 488-489: 597
[21] Yang X Y, Miura H, Sakai T. Mater Trans, 2003; 44: 197
[22] Galiyev A, Kaibyshev R,Gottstein G. Acta Mater, 2001; 49: 1199
[23] Perez-Prado M T, del Valle J A, Ruano O A. Scr Mater, 2004; 51: 1093
[24] Sun M C.Mechanical Properties of Metals. Harbin: Harbin Institute of Technology Press, 2003: 73 (孙茂才.金属力学性能.哈尔滨:哈尔滨工业大学出版社,2003: 73)K
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[4] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[5] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[8] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[9] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[10] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[11] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[12] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[13] 刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.
[14] 李谦, 刘凯, 赵天亮. 弹性拉应力下Q235碳钢在5%NaCl盐雾中的成锈行为及其机理[J]. 金属学报, 2023, 59(6): 829-840.
[15] 郭福, 杜逸晖, 籍晓亮, 王乙舒. 微电子互连用锡基合金及复合钎料热-机械可靠性研究进展[J]. 金属学报, 2023, 59(6): 744-756.