Please wait a minute...
金属学报  2004, Vol. 40 Issue (4): 367-372     
  论文 本期目录 | 过刊浏览 |
42CrMoVNb细晶高强钢的疲劳行为
杨振国 张继明 李守新
中国科学院金属研究所沈阳材料科学国家(联合)实验室; 沈阳 110016
FATIGUE BEHAVIOR OF FINE--GRAINED HIGH STRENGTH STEEL 42CrMoVNb
YANG Zhenguo; ZHANG Jiming; LI Shouxin
Shenyang National Laboratory for Materials Science; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
引用本文:

杨振国; 张继明; 李守新 . 42CrMoVNb细晶高强钢的疲劳行为[J]. 金属学报, 2004, 40(4): 367-372 .
, , . FATIGUE BEHAVIOR OF FINE--GRAINED HIGH STRENGTH STEEL 42CrMoVNb[J]. Acta Metall Sin, 2004, 40(4): 367-372 .

全文: PDF(353 KB)  
摘要: 研究了不同热处理制度下得到的3种晶粒尺寸的42CrMoVNb细晶高强钢的疲劳性能. 结果表明, 它们的光滑疲劳试样S--N曲线在10 6---10 7周期范围内无平台出现, 疲劳极限消失. SEM断口观察表明, 光 滑试样疲劳裂纹起源位置与寿命长短密切相关, 测量了长寿命试样疲劳断裂源夹杂物的位置及尺寸. 通过对实验数据的初步分析, 给出了夹杂物 及奥氏体晶粒尺寸应控制的水平.
关键词 42CrMoVNb高强钢晶粒细化疲劳强度    
Abstract:The fatigue properties of high strength steel 42CrMoVNb with three fine grain sizes produced by different heat treatment procedures were studied. The experimental results illustrate that at 10 6---10 7 cycles regime, there is no horizontal asymptote in fatigue S--N curves for smooth specimens, so the conventional fatigue limit disappears. SEM shows the fatigue crack initiation sites in smooth specimens are related closely to fatigue life, and most of the sites are at inclusions. From analyzing the experimental data, the critical size of inclusion and the most appropriate size of prior austenite, which should be controlled in practical production, are obtained.
Key wordshigh strength steel 42CrMoVNb    fine grain size    fatigue strength
收稿日期: 2003-03-24     
ZTFLH:  TG111.8  
[1] Hall E O. Proc Phys Soc, 1951; 64B: 747
[2] Cracknell A, Petch N J. Acta Metall, 1955; 3: 186
[3] Fetch N J. Fracture. Wiley, New York, 1959: 54
[4] Alden T H. Trans TMS-AIME, 1966; 236: 710
[5] Packer C M, Sherby O D. Trans ASM, 1967; 60: 21
[6] Burke J J, Weiss V, Translated by Wang Y W, ZhangY C. Ultrafine-Grain Metals. Beijing: National DefenseIndustry Press, 1982: 214(Burke J J,Weiss V著,王燕文,张勇昌译.超细晶粒金属.北京;国防工业出版社, 1982:214)
[7] Yoshikawa A, Sugeno F. AIME, 1965; 233: 1314
[8] Kage M, Miller K J, Smith R A. Fatigue Fract Eng M,1992; 15: 763
[9] Zhou S, Murakami Y, Beretta S, Fukushima Y. Mater SciTechnol, 2002; 18: 1535
[10] Choo W Y. Conference: Workshop on New Genneration Steel. The Chinese Society for Metal, Beijing, China, Nov., 2001: 16
[11] Hui W J, Dong H, Wang M Q, Chen S L, Weng Y Q.Conference: Workshop on New Genneration Steel. TheChinese Society for Metal, Beijing, China, Nov., 2001: 375
[12] Suresh S, Translated by Wang Z G. Fatigue of Materials.Beijing: National Defense Industry Press, 1999: 173(Suresh S著,王中光译.材料的疲劳.北京:国防工业出版社,1999:173)
[13] Furaya T, Matsuoka S, Abe T, Yamaguchi K. Proceedingsof the 8th International Fatigue Congress (Fatigue 2002) ,Stockholm, Sweden, June 2002; 5: 2955
[14] Miller K J, O'Donnell W J. Fat Fract Eng Mater Struct,1999; 22: 545
[15] Murakami Y, Nomoto T, Ueda T. Fat Fract Eng MaterStruct, 1999; 22: 581
[16] Murakami Y, Noamoto T, Ueda T, Murakami Y. Fat FractEng Mater Struct, 2000; 23: 893
[17] Murakami Y, Nomoto T, Ueda T, Murakami Y. Fat FractEng Mater Struct, 2000; 23: 903
[18] Morris J W, Jr., Guo Z, Krenn C R, Kim Y H. ISIJ International, 2001; 41: 599
[19] Kuhlmann-Wilsdorf D, Thomason P F. Acta Metall, 1982;30: 1243
[20] Suresh S, Translated by Wang Z G, Li S X et al. Fatigueof Materials. Beijing: National Defense Industry Press,1999: 248(Suresh S著,王中光等译.材料的疲劳.北京:国防工业出版社, 1999:248)6
[1] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[2] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[3] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
[4] 丁宁, 王云峰, 刘轲, 朱训明, 李淑波, 杜文博. 高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能[J]. 金属学报, 2021, 57(8): 1000-1008.
[5] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[6] 武华健, 程仁山, 李景仁, 谢东升, 宋锴, 潘虎成, 秦高梧. Al含量对Mg-Sn-Ca合金微观组织与力学性能的影响[J]. 金属学报, 2020, 56(10): 1423-1432.
[7] 张军,介子奇,黄太文,杨文超,刘林,傅恒志. 镍基铸造高温合金等轴晶凝固成形技术的研究和进展[J]. 金属学报, 2019, 55(9): 1145-1159.
[8] 邓丽萍,崔凯旋,汪炳叔,向红亮,李强. AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究[J]. 金属学报, 2019, 55(8): 976-986.
[9] 李淑波, 杜文博, 王旭东, 刘轲, 王朝辉. Zr对Mg-Gd-Er合金晶粒细化机理的影响[J]. 金属学报, 2018, 54(6): 911-917.
[10] 毛轶哲, 李建国, 封蕾. 573 K高温时效处理的Al-10Mg合金中粗大β(Al3Mg2)相对热压缩组织演化的影响及机理[J]. 金属学报, 2018, 54(10): 1451-1460.
[11] 张丽丽, 江鸿翔, 赵九洲, 李璐, 孙倩. 溶质Ti对Al-Ti-B中间合金细化Al影响的新认识:TiB2粒子的动力学行为及溶质Ti的影响[J]. 金属学报, 2017, 53(9): 1091-1100.
[12] 张志强,董利民,关少轩,杨锐. TC16钛合金辊模拉丝过程中的显微组织和力学性能[J]. 金属学报, 2017, 53(4): 415-422.
[13] 李宁,张蓉,张利民,邢辉,殷鹏飞,吴耀燕. 低压交流电脉冲下Al-7%Si合金晶粒细化机理研究[J]. 金属学报, 2017, 53(2): 192-200.
[14] 左锦荣,侯陇刚,史金涛,崔华,庄林忠,张济山. 两阶段轧制变形过程中高强铝合金析出相与晶粒结构演变及其对性能的影响*[J]. 金属学报, 2016, 52(9): 1105-1114.
[15] 滕跃飞,李应举,冯小辉,杨院生. 脉冲磁场作用下矩形截面宽厚比对K4169高温合金晶粒细化的影响*[J]. 金属学报, 2015, 51(7): 844-852.