|
|
|
| 微重力条件下Gd-Co-Ti合金原位粒子复合凝固组织的形成 |
孙昊1,2, 江鸿翔1,2( ), 赵九洲1,2( ), 张丽丽1,2, 何杰1,2 |
1 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 2 中国科学技术大学 材料科学与工程学院 沈阳 110016 |
|
| Formation of In Situ Particle Composite Solidification Microstructure of Gd-Co-Ti Alloy Under Microgravity Conditions |
SUN Hao1,2, JIANG Hongxiang1,2( ), ZHAO Jiuzhou1,2( ), ZHANG Lili1,2, HE Jie1,2 |
1 Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
引用本文:
孙昊, 江鸿翔, 赵九洲, 张丽丽, 何杰. 微重力条件下Gd-Co-Ti合金原位粒子复合凝固组织的形成[J]. 金属学报, 2025, 61(12): 1933-1944.
Hao SUN,
Hongxiang JIANG,
Jiuzhou ZHAO,
Lili ZHANG,
Jie HE.
Formation of In Situ Particle Composite Solidification Microstructure of Gd-Co-Ti Alloy Under Microgravity Conditions[J]. Acta Metall Sin, 2025, 61(12): 1933-1944.
| [1] |
Sinha V K, Cheng S F, Wallace W E, et al. Magnetic behavior of heavy rare earth RTiFe11 - x Co x alloys [J]. J. Magn. Magn. Mater., 1989, 81: 227
|
| [2] |
Gjoka M, Sarafidis C, Niarchos D, et al. Structure and magnetic properties of Gd4(Co, Ti)41 alloys [J]. J. Alloys Compd., 2006, 423: 59
|
| [3] |
Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46: 2817
|
| [4] |
Dong B W, Jie J C, Dong Z Z, et al. Novel insight into mechanism of secondary phase's morphology evolution in hypomonotectic Cu-Pb-Sn alloy during solidification [J]. J. Mol. Liq., 2019, 292: 111336
|
| [5] |
Lu W Q, Zhang S G, Li J G. Segregation driven by collision and coagulation of minor droplets in Al-Bi immiscible alloys under aerodynamic levitation condition [J]. Mater. Lett., 2013, 107: 340
|
| [6] |
Zhao J Z, Jiang H X. Progress in the solidification of monotectic alloys [J]. Acta Metall. Sin., 2018, 54: 682
|
| [6] |
赵九洲, 江鸿翔. 偏晶合金凝固过程研究进展 [J]. 金属学报, 2018, 54: 682
|
| [7] |
Ahlborn H, Loehberg K. Aluminium-indium-experiment SOLUOG—A sounding rocket experiment on immiscible alloys [A]. Proceedings of the 17th Aerospace Sciences Meeting [C]. New Orleans: AIAA, 1979: 172
|
| [8] |
Carlberg T, Fredriksson H. The influence of microgravity on the solidification of Zn-Bi immiscible alloys [J]. Metall. Trans., 1980, 11A: 1665
|
| [9] |
Feuerbacher B, Hamacher H, Naumann R J. Binary systems with miscibility gap in the liquid state [A]. Materials Sciences in Space: A Contribution to the Scientific Basis of Space Processing [M]. Berlin, Heidelberg: Springer, 1986: 343
|
| [10] |
Zhao J Z, Sun H, Zhang L L, et al. In-situ composite microstructure formation of immiscible alloy solidified in space [J]. Natl. Sci. Rev., 2023, 10: nwac261
|
| [11] |
Zhang Y, Wu Y, Tang Y, et al. In situ study on the oscillation of mobile droplets and force analysis during the directional solidification of Al-Bi alloy [J]. J. Mater. Sci. Technol., 2024, 177: 1
|
| [12] |
Sun H, Jiang H X, Li Y Q, et al. Control of competitive phase selection by in-situ nanoparticles [J]. J. Alloys Compd., 2023, 962: 171202
|
| [13] |
Mullis A M, Jegede O E, Bigg T D, et al. Dynamics of core-shell particle formation in drop-tube processed metastable monotectic alloys [J]. Acta Mater., 2020, 188: 591
|
| [14] |
Zhang L L, Yang L J, Zhao J Z, et al. Selection of a micro-alloying interface active component to stabilize the interface between droplets and liquid matrix in monotectic alloys [J]. Acta Mater., 2023, 250: 118823
|
| [15] |
Li Y Q, Zhao J Z, Jiang H X, et al. Microstructure formation in directionally solidified Pb-Al alloy [J]. Acta Metall. Sin., 2022, 58: 1072
|
| [15] |
李彦强, 赵九洲, 江鸿翔 等. Pb-Al合金定向凝固组织形成过程 [J]. 金属学报, 2022, 58: 1072
|
| [16] |
Yang L J, Zhang L L, Zhao J Z, et al. A simple criterion for the selection of interfacial active element to control liquid-liquid decomposition of immiscible alloys [J]. Scr. Mater., 2024, 238: 115753
|
| [17] |
Sun Q, Jiang H X, Zhao J Z. Effect of micro-alloying element Bi on solidification and microstructure of Al-Pb alloy [J]. Acta Metall. Sin., 2016, 52: 497
|
| [17] |
孙 倩, 江鸿翔, 赵九洲. 微量元素Bi对Al-Pb合金凝固过程及显微组织的影响 [J]. 金属学报, 2016, 52: 497
|
| [18] |
Zhou B F, Lin W H, Shen Z, et al. Growth dynamics of the segregated phase in Zn-6wt%Bi immiscible alloy superheated in super high static magnetic field [J]. J. Alloys Compd., 2021, 879: 160410
|
| [19] |
Li W, Jiang H X, Zhang L L, et al. Solidification of Al-Bi-Sn immiscible alloy under microgravity conditions of space [J]. Scr. Mater., 2019, 162: 426
|
| [20] |
Wei C, Wang J, He Y X, et al. Influence of high magnetic field on the liquid-liquid phase separation behavior of an undercooled Cu-Co immiscible alloy [J]. J. Alloys Compd., 2020, 842: 155502
|
| [21] |
Liu Y, Li Y X, Guo J J, et al. Numerical simulation of macro-segregation formation during solidification process of immiscible alloys [J]. Acta Metall. Sin., 2003, 39: 679
|
| [21] |
刘 源, 李言祥, 郭景杰 等. 难混溶合金凝固过程中宏观偏析形成的数值模拟 [J]. 金属学报, 2003, 39: 679
|
| [22] |
Zhao J Z, Ratke L. A model describing the microstructure evolution during a cooling of immiscible alloys in the miscibility gap [J]. Scr. Mater., 2004, 50: 543
|
| [23] |
Deng C K, Jiang H X, Zhao J Z, et al. Study on the solidification of Ag-Ni monotectic alloy [J]. Acta Metall. Sin., 2020, 56: 212
|
| [23] |
邓聪坤, 江鸿翔, 赵九洲 等. Ag-Ni偏晶合金凝固过程研究 [J]. 金属学报, 2020, 56: 212
|
| [24] |
Wu Y H, Zhu B R, Su J W, et al. A comparative study of metastable phase separation for undercooled liquid Fe35Cu65 alloy under natural and forced cooling conditions [J]. J. Alloys Compd., 2022, 927: 167079
|
| [25] |
Li Y Q, Jiang H X, Sun H, et al. Microstructure evolution of immiscible alloy solidified under the effect of composite electric and magnetic fields [J]. J. Mater. Sci. Technol., 2023, 162: 247
|
| [26] |
Wu W H, Wang J Y, Zhai W, et al. A computational and experimental study of ultrasonicated phase separation process for liquid Al-Bi immiscible alloy [J]. Metall. Mater. Trans., 2023, 54B: 1845
|
| [27] |
Wu Y H, Wang W L, Chang J, et al. Evolution kinetics of microgravity facilitated spherical macrosegregation within immiscible alloys [J]. J. Alloys Compd., 2018, 763: 808
|
| [28] |
Wu Y H, Wang W L, Wei B B. Experimental investigation and numerical simulation on liquid phase separation of ternary Fe-Sn-Si/Ge monotectic alloy [J]. Acta Phys. Sin., 2016, 65: 106402
|
| [28] |
吴宇昊, 王伟丽, 魏炳波. 液态三元Fe-Sn-Si/Ge偏晶合金相分离过程的实验和模拟研究 [J]. 物理学报, 2016, 65: 106402
|
| [29] |
Liu S C, Jie J C, Zhang J J, et al. A surface energy driven dissolution model for immiscible Cu-Fe alloy [J]. J. Mol. Liq., 2018, 261: 232
|
| [30] |
Li W, Sun Q, Jiang H X, et al. Solidification of Al-Bi alloy and influence of microalloying element Sn [J]. Acta Metall. Sin., 2019, 55: 831
|
| [30] |
黎 旺, 孙 倩, 江鸿翔 等. Al-Bi合金凝固过程及微合金化元素Sn的影响 [J]. 金属学报, 2019, 55: 831
|
| [31] |
Zhao J Z, Jiang H X, Sun Q, et al. Progress of research on solidification process and microstructure control of immiscible alloys [J]. Mater. China, 2017, 36(4): 12
|
| [31] |
赵九洲, 江鸿翔, 孙 倩 等. 偏晶合金凝固过程及凝固组织控制方法研究进展 [J]. 中国材料进展, 2017, 36(4): 12
|
| [32] |
Mattern N, Zinkevich M, Han J H, et al. Experimental and thermodynamic assessment of the Co-Gd-Ti system [J]. Calphad, 2016, 54: 144
|
| [33] |
Sun H. Rapid/sub-rapid solidification microstructure formation and control of liquid-liquid phase separation alloy under ground/space conditions [D]. Hefei: University of Science and Technology of China, 2024
|
| [33] |
孙 昊. 地面/空间液-液相分离合金快速/亚快速凝固组织形成及调控 [D]. 合肥: 中国科学技术大学, 2024
|
| [34] |
Zhao J Z. The kinetics of the liquid-liquid decomposition under the rapid solidification conditions of gas atomization [J]. Mater. Sci. Eng., 2007, A454-455: 637
|
| [35] |
Zhao J Z, Kolbe M, Li H L, et al. Formation of the microstructure in a rapidly solidified Cu-Co alloy [J]. Metall. Mater. Trans., 2007, 38A: 1162
|
| [36] |
Zhao J Z, Gao L L, He J, et al. Liquid-liquid phase transformation kinetics of an atomized Al-Pb alloy drop [J]. Acta Metall. Sin., 2006, 42: 113
|
| [36] |
赵九洲, 高玲玲, 何 杰 等. Al-Pb合金雾化液滴的液-液相变动力学 [J]. 金属学报, 2006, 42: 113
|
| [37] |
Ratke L, Diefenbach S. Liquid immiscible alloys [J]. Mater. Sci. Eng., 1995, R15: 263
|
| [38] |
Zhao J, Ratke L. Repeated nucleation of minority phase droplets induced by drop motion [J]. Scr. Mater., 1998, 39: 181
|
| [39] |
Wu M H, Ludwig A, Ratke L. Modeling of marangoni-induced droplet motion and melt convection during solidification of hypermonotectic alloys [J]. Metall. Mater. Trans., 2003, 34A: 3009
|
| [40] |
Ishikawa T, Okada J T, Paradis P F, et al. Thermophysical property measurements of liquid gadolinium by containerless methods [J]. Int. J. Thermophys., 2010, 31: 388
|
| [41] |
Iida T, Guthrie R I L, translated by Xian A P, Wang L W. The Physical Properties of Liquid Metals [M]. Beijing: Science Press, 2006: 256
|
| [41] |
饭田孝道, Guthrie R I L著 . 冼爱平, 王连文 译. 液态金属的物理性能 [M]. 北京: 科学出版社, 2006: 256
|
| [42] |
Kaptay G. A Calphad-compatible method to calculate liquid/liquid interfacial energies in immiscible metallic systems [J]. Calphad, 2008, 32: 338
|
| [43] |
Gale W F, Totemeier T C. Smithells Metals Reference Book [M]. 8th Ed., Oxford: Elsevier, 2004: 1127
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|