|
|
如何使合金兼具高强度与高塑性 |
马恩( ), 刘畅 |
西安交通大学 金属材料强度全国重点实验室 材料创新设计中心 西安 710049 |
|
Achieving Alloys with Concurrent High Strength and High Ductility |
MA En (MA Evan)( ), LIU Chang |
Center for Alloy Innovation and Design, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China |
引用本文:
马恩, 刘畅. 如何使合金兼具高强度与高塑性[J]. 金属学报, 2025, 61(5): 665-673.
En (MA Evan) MA,
Chang LIU.
Achieving Alloys with Concurrent High Strength and High Ductility[J]. Acta Metall Sin, 2025, 61(5): 665-673.
1 |
Ma E, Zhu T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals [J]. Mater. Today, 2017, 20: 323
|
2 |
Zhang Z J, Qu Z, Xu L, et al. Relationship between strength and uniform elongation of metals based on an exponential hardening law [J]. Acta Mater., 2022, 231: 117866
|
3 |
Liu X R, Feng H, Wang J, et al. Mechanical property comparisons between CrCoNi medium-entropy alloy and 316 stainless steels [J]. J. Mater. Sci. Technol., 2022, 108: 256
doi: 10.1016/j.jmst.2021.08.057
|
4 |
Shi P J, Li R G, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys [J]. Science, 2021, 373: 912
doi: 10.1126/science.abf6986
pmid: 34413235
|
5 |
Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362: 933
doi: 10.1126/science.aas8815
pmid: 30467166
|
6 |
Hart E W. Theory of the tensile test [J]. Acta Metall., 1967, 15: 351
|
7 |
Hutchinson J W, Neale K W. Influence of strain-rate sensitivity on necking under uniaxial tension [J]. Acta Metall., 1977, 25: 839
|
8 |
Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
|
9 |
Yang Y, Chen T Y, Tan L Z, et al. Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy [J]. Nature, 2021, 595: 245
|
10 |
Wei D X, Wang L Q, Zhang Y J, et al. Metalloid substitution elevates simultaneously the strength and ductility of face-centered-cubic high-entropy alloys [J]. Acta Mater., 2022, 225: 117571
|
11 |
Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
|
12 |
Wu X L, Yuan F P, Yang M X, et al. Nanodomained nickel unite nanocrystal strength with coarse-grain ductility [J]. Sci. Rep., 2015, 5: 11728
doi: 10.1038/srep11728
pmid: 26122728
|
13 |
Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
doi: 10.1073/pnas.1517193112
pmid: 26554017
|
14 |
Li X Y, Lu L, Li J G, et al. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys [J]. Nat. Rev. Mater., 2020, 5: 706
|
15 |
Ashby M F. The deformation of plastically non-homogeneous materials [J]. Philos. Mag., 1970, 21: 399
|
16 |
Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
|
17 |
Ma E, Liu C. Chemical inhomogeneities in high-entropy alloys help mitigate the strength-ductility trade-off [J]. Prog. Mater. Sci., 2024, 143: 101252
|
18 |
Ma E, Ding J. Compositional fluctuation and local chemical ordering in multi-principal element alloys [J]. J. Mater. Sci. Technol., 2025, 220: 233
|
19 |
Wang L, Ding J, Chen S S, et al. Tailoring planar slip to achieve pure metal-like ductility in body-centred-cubic multi-principal element alloys [J]. Nat. Mater., 2023, 22: 950
doi: 10.1038/s41563-023-01517-0
pmid: 37037961
|
20 |
Ding Q Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574: 223
|
21 |
Li Q J, Sheng H, Ma E. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways [J]. Nat. Commun., 2019, 10: 3563
|
22 |
Chen X F, Wang Q, Cheng Z Y, et al. Direct observation of chemical short-range order in a medium-entropy alloy [J]. Nature, 2021, 592: 712
|
23 |
Jiao M Y, Lei Z F, Wu Y, et al. Manipulating the ordered oxygen complexes to achieve high strength and ductility in medium-entropy alloys [J]. Nat. Commun., 2023, 14: 806
doi: 10.1038/s41467-023-36319-0
pmid: 36781880
|
24 |
Bu Y Q, Wu Y, Lei Z F, et al. Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys [J]. Mater. Today, 2021, 46: 28
|
25 |
An Z B, Li A, Mao S C, et al. Negative mixing enthalpy solid solutions deliver high strength and ductility [J]. Nature, 2024, 625: 697
|
26 |
Li H, Zong H X, Li S Z, et al. Uniting tensile ductility with ultrahigh strength via composition undulation [J]. Nature, 2022, 604: 273
|
27 |
Han L L, Maccari F, Souza Filho I R, et al. A mechanically strong and ductile soft magnet with extremely low coercivity [J]. Nature, 2022, 608: 310
|
28 |
Yang T, Zhao Y L, Li W P, et al. Ultrahigh-strength and ductile superlattice alloys with nanoscale disordered interfaces [J]. Science, 2020, 369: 427
doi: 10.1126/science.abb6830
pmid: 32703875
|
29 |
Chen E Z, Tamm A, Wang T, et al. Modeling antiphase boundary energies of Ni3Al-based alloys using automated density functional theory and machine learning [J]. npj Comput. Mater., 2022, 8: 80
|
30 |
Meng C G, Guo J T, Hu Z Q. Mechanism of macroalloying-induced ductility in Ni3Al [J]. J. Mater. Sci. Technol., 1994, 10: 279
|
31 |
Chiba A, Hanada S, Watanabe S. Improvement in ductility of Ni3Al by γ former doping [A]. High Temperature Aluminides and Intermetallics [M]. London: Elsevier, 1992: 108
|
32 |
Lü B L, Chen G Q, Qu S, et al. Effect of alloying elements on <111> dislocation in NiAl: A first-principles study [J]. Physica, 2013, 417B: 9
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|