Please wait a minute...
金属学报  2025, Vol. 61 Issue (5): 665-673    DOI: 10.11900/0412.1961.2024.00422
  ★名家经典★ 本期目录 | 过刊浏览 |
如何使合金兼具高强度与高塑性
马恩(), 刘畅
西安交通大学 金属材料强度全国重点实验室 材料创新设计中心 西安 710049
Achieving Alloys with Concurrent High Strength and High Ductility
MA En (MA Evan)(), LIU Chang
Center for Alloy Innovation and Design, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
引用本文:

马恩, 刘畅. 如何使合金兼具高强度与高塑性[J]. 金属学报, 2025, 61(5): 665-673.
En (MA Evan) MA, Chang LIU. Achieving Alloys with Concurrent High Strength and High Ductility[J]. Acta Metall Sin, 2025, 61(5): 665-673.

全文: PDF(2535 KB)   HTML
摘要: 

屈服强度与拉伸塑性是衡量金属材料是否具备应用潜力的重要指标。然而,两者之间往往呈现倒置关系:屈服强度的提升常以牺牲拉伸塑性为代价。因此,同时获得高强度与高塑性一直以来都是材料科学家追求的目标。本文探讨室温下屈服强度与拉伸塑性的本征关系,分析两者之间相互制约的根源,论证金属材料在强化的同时保持拉伸塑性、实现“鱼和熊掌兼得”的可行性。以兼具高屈服强度(约2 GPa)和高拉伸塑性(约30%均匀延伸率)为目标设计合金。文中提出的策略从多主元合金中复杂多样且在纳米尺度上非均匀的微观组织结构出发,调控强化和应变硬化机制,包括利用浓质固溶体合金中的宽广成分空间将传统的机制发挥到极致,并辅以非均匀性(特别是化学非均匀性)诱生的新机制。本文总结了既定强度-塑性目标范围内的最新进展。文中的观点与论述,旨在为解决强度-塑性相互掣肘难题提供新见解和新思路。

关键词 金属材料结构异质性化学异质性强度塑性应变硬化    
Abstract

Increasing the yield strength of metallic materials is observed to almost always substantially reduce their tensile ductility. Here we unravel the origin of this perplexing “strength-ductility trade-off”, and conclude that this dilemma does not necessarily preclude concurrent high strength and high ductility. We discuss several strengthening and work hardening mechanisms that regulate dislocation behavior, including traditional ones that have been pushed to their extreme in recent years, as well as new ones that take advantage of the heightened structural and chemical heterogeneities; all these mechanisms are rendered more powerful by emerging complex concentrated alloys that bring in multiple principal elements. These mechanisms, while offering elevated strength, contribute to sustainable strain hardening under high flow stresses, delaying strain localization to allow prolonged uniform elongation. The current status in the pursuit for concurrent high strength and high ductility is reviewed. The goal we set for high yield strength ~2 GPa (rivaling super steels) together with large uniform elongation ~30% (much like un-strengthened elemental metals) is projected to be soon within reach. These take-home messages shed light on some existing puzzles regarding the strength-ductility synergy, and offer new insight into the innovative design of alloys.

Key wordsmetallic material    structural heterogeneity    chemical heterogeneity    strength    ductility    strain hardening
收稿日期: 2024-12-16     
ZTFLH:  TG142  
基金资助:国家自然科学基金项目(52231001);国家自然科学基金项目(52371162);国家自然科学基金优秀青年科学基金(海外)项目
通讯作者: 马 恩,maen@xjtu.edu.cn,主要从事非平衡材料、非晶态合金、相变存储材料,多主元合金、纳米结构合金研究
Corresponding author: MA En (MA Evan), professor, Tel:(029)82664764, E-mail: maen@xjtu.edu.cn
作者简介: 马 恩,男,教授,博士
图1  铜合金和钢中工程抗拉强度(Eng. UTS)和工程均匀延伸率(Eng.UE)呈相互制约的态势,曲线走向趋于“香蕉状”,加入合金元素调控成分可以降低性能间相互掣肘的程度[2]
图2  几种典型结构调控案例:fcc-hcp相变诱导塑性[8]、fcc-bcc相变诱导塑性[9]、层错和孪晶诱导塑性[10]和“双峰”晶粒尺寸分布[13]
图3  以化学/结构异质性提供强化和应变硬化机制的几个典型案例:bcc合金中的类B2局域化学序[19],纳米尺度成分起伏[26],高密度、大体积分数纳米析出相[27],及具有纳米尺度无序界面的金属间化合物[28]
图4  屈服强度< 1.2 GPa[17]和1.2~2.2 GPa范围内金属材料拉伸屈服强度-均匀应变总图
1 Ma E, Zhu T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals [J]. Mater. Today, 2017, 20: 323
2 Zhang Z J, Qu Z, Xu L, et al. Relationship between strength and uniform elongation of metals based on an exponential hardening law [J]. Acta Mater., 2022, 231: 117866
3 Liu X R, Feng H, Wang J, et al. Mechanical property comparisons between CrCoNi medium-entropy alloy and 316 stainless steels [J]. J. Mater. Sci. Technol., 2022, 108: 256
doi: 10.1016/j.jmst.2021.08.057
4 Shi P J, Li R G, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys [J]. Science, 2021, 373: 912
doi: 10.1126/science.abf6986 pmid: 34413235
5 Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362: 933
doi: 10.1126/science.aas8815 pmid: 30467166
6 Hart E W. Theory of the tensile test [J]. Acta Metall., 1967, 15: 351
7 Hutchinson J W, Neale K W. Influence of strain-rate sensitivity on necking under uniaxial tension [J]. Acta Metall., 1977, 25: 839
8 Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
9 Yang Y, Chen T Y, Tan L Z, et al. Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy [J]. Nature, 2021, 595: 245
10 Wei D X, Wang L Q, Zhang Y J, et al. Metalloid substitution elevates simultaneously the strength and ductility of face-centered-cubic high-entropy alloys [J]. Acta Mater., 2022, 225: 117571
11 Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
12 Wu X L, Yuan F P, Yang M X, et al. Nanodomained nickel unite nanocrystal strength with coarse-grain ductility [J]. Sci. Rep., 2015, 5: 11728
doi: 10.1038/srep11728 pmid: 26122728
13 Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
doi: 10.1073/pnas.1517193112 pmid: 26554017
14 Li X Y, Lu L, Li J G, et al. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys [J]. Nat. Rev. Mater., 2020, 5: 706
15 Ashby M F. The deformation of plastically non-homogeneous materials [J]. Philos. Mag., 1970, 21: 399
16 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
17 Ma E, Liu C. Chemical inhomogeneities in high-entropy alloys help mitigate the strength-ductility trade-off [J]. Prog. Mater. Sci., 2024, 143: 101252
18 Ma E, Ding J. Compositional fluctuation and local chemical ordering in multi-principal element alloys [J]. J. Mater. Sci. Technol., 2025, 220: 233
19 Wang L, Ding J, Chen S S, et al. Tailoring planar slip to achieve pure metal-like ductility in body-centred-cubic multi-principal element alloys [J]. Nat. Mater., 2023, 22: 950
doi: 10.1038/s41563-023-01517-0 pmid: 37037961
20 Ding Q Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574: 223
21 Li Q J, Sheng H, Ma E. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways [J]. Nat. Commun., 2019, 10: 3563
22 Chen X F, Wang Q, Cheng Z Y, et al. Direct observation of chemical short-range order in a medium-entropy alloy [J]. Nature, 2021, 592: 712
23 Jiao M Y, Lei Z F, Wu Y, et al. Manipulating the ordered oxygen complexes to achieve high strength and ductility in medium-entropy alloys [J]. Nat. Commun., 2023, 14: 806
doi: 10.1038/s41467-023-36319-0 pmid: 36781880
24 Bu Y Q, Wu Y, Lei Z F, et al. Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys [J]. Mater. Today, 2021, 46: 28
25 An Z B, Li A, Mao S C, et al. Negative mixing enthalpy solid solutions deliver high strength and ductility [J]. Nature, 2024, 625: 697
26 Li H, Zong H X, Li S Z, et al. Uniting tensile ductility with ultrahigh strength via composition undulation [J]. Nature, 2022, 604: 273
27 Han L L, Maccari F, Souza Filho I R, et al. A mechanically strong and ductile soft magnet with extremely low coercivity [J]. Nature, 2022, 608: 310
28 Yang T, Zhao Y L, Li W P, et al. Ultrahigh-strength and ductile superlattice alloys with nanoscale disordered interfaces [J]. Science, 2020, 369: 427
doi: 10.1126/science.abb6830 pmid: 32703875
29 Chen E Z, Tamm A, Wang T, et al. Modeling antiphase boundary energies of Ni3Al-based alloys using automated density functional theory and machine learning [J]. npj Comput. Mater., 2022, 8: 80
30 Meng C G, Guo J T, Hu Z Q. Mechanism of macroalloying-induced ductility in Ni3Al [J]. J. Mater. Sci. Technol., 1994, 10: 279
31 Chiba A, Hanada S, Watanabe S. Improvement in ductility of Ni3Al by γ former doping [A]. High Temperature Aluminides and Intermetallics [M]. London: Elsevier, 1992: 108
32 Lü B L, Chen G Q, Qu S, et al. Effect of alloying elements on <111> dislocation in NiAl: A first-principles study [J]. Physica, 2013, 417B: 9
[1] 罗来马, 魏国庆, 刘祯, 朱晓勇, 吴玉程. 钨材料中缺陷的形成及演化规律[J]. 金属学报, 2025, 61(4): 526-540.
[2] 曾小勤, 于铭迪, 王静雅. 镁合金的多系滑移与塑性调控[J]. 金属学报, 2025, 61(3): 361-371.
[3] 周雯慧, 熊锦涛, 黄思程, 王鹏昊, 刘勇. AZ31镁合金双峰组织形成机制及其变形行为[J]. 金属学报, 2025, 61(3): 488-498.
[4] 贾春妮, 刘腾远, 郑成武, 王培, 李殿中. 中锰钢奥氏体中化学界面变形行为的晶体塑性研究[J]. 金属学报, 2025, 61(2): 349-360.
[5] 王延绪, 龚武, 苏玉华, 李昺. 中子表征技术在金属结构材料研究中的应用[J]. 金属学报, 2024, 60(8): 1001-1016.
[6] 杨瑞泽, 翟汝宗, 任少飞, 孙明月, 徐斌, 乔岩欣, 杨兰兰. 1Cr22Mn16N高氮奥氏体不锈钢塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2024, 60(7): 915-925.
[7] 汪丽佳, 胡励, 苗天虎, 周涛, 何曲波, 刘相果. 预变形对双峰分离非基面织构AZ31镁合金板材室温力学行为及微观组织演变的影响[J]. 金属学报, 2024, 60(7): 881-889.
[8] 苏帅, 韩鹏, 杨善武, 王华, 金耀辉, 尚成嘉. Ni含量对高强度低合金钢淬透性影响的晶体学认识[J]. 金属学报, 2024, 60(6): 789-801.
[9] 张竟文, 余黎明, 刘晨曦, 丁然, 刘永长. Cr马氏体耐热钢的协同强化机制及形变热处理应用[J]. 金属学报, 2024, 60(6): 713-730.
[10] 张光莹, 李岩, 黄丽颖, 定巍. 连续屈服、高强屈比中锰钢的工艺设计与组织调控[J]. 金属学报, 2024, 60(4): 443-452.
[11] 陈克新, 张龙. 2023年度金属材料学科国家自然科学基金管理工作综述[J]. 金属学报, 2024, 60(4): 417-424.
[12] 程坤, 陈树明, 曹烁, 刘建荣, 马英杰, 范群波, 程兴旺, 杨锐, 胡青苗. 第一性原理研究钛合金中的沉淀强化[J]. 金属学报, 2024, 60(4): 537-547.
[13] 李龙健, 李仁庚, 张家郡, 曹兴豪, 康慧君, 王同敏. 低温轧制对高强高导Cu-1Cr-0.2Zr-0.25Nb合金性能及析出行为的影响[J]. 金属学报, 2024, 60(3): 405-416.
[14] 李振亮, 张欣磊, 田董扩. 多道次压缩变形对AZ80镁合金微观组织演化的影响[J]. 金属学报, 2024, 60(3): 311-322.
[15] 彭祥阳, 张乐, 李聪聪, 侯硕, 刘迪, 周建明, 路广遥, 蒋虽合. AlCr协同作用提高核用高强钢耐水蒸气氧化性能[J]. 金属学报, 2024, 60(3): 357-366.