|
|
马氏体-奥氏体组元特征分布对复相钢扩孔行为的影响 |
杨晓宇1,2, 米振莉1( ), 方幸1, 刘航瑞1, 牟望重2,3( ) |
1 北京科技大学 工程技术研究院 北京 100083 2 Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE 100 44, Stockholm, Sweden 3 Engineering Materials, Lulea University of Technology, SE 971 87, Lulea, Sweden |
|
Achieving an Excellent Hole Expansion Behavior in Complex Phase Steels by Characteristic Distribution of Martensite-Austenite Constituents |
YANG Xiaoyu1,2, MI Zhenli1( ), FANG Xing1, LIU Hangrui1, MU Wangzhong2,3( ) |
1 Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China 2 Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE 100 44, Stockholm, Sweden 3 Engineering Materials, Lulea University of Technology, SE 971 87, Lulea, Sweden |
引用本文:
杨晓宇, 米振莉, 方幸, 刘航瑞, 牟望重. 马氏体-奥氏体组元特征分布对复相钢扩孔行为的影响[J]. 金属学报, 2025, 61(5): 674-686.
Xiaoyu YANG,
Zhenli MI,
Xing FANG,
Hangrui LIU,
Wangzhong MU.
Achieving an Excellent Hole Expansion Behavior in Complex Phase Steels by Characteristic Distribution of Martensite-Austenite Constituents[J]. Acta Metall Sin, 2025, 61(5): 674-686.
1 |
Hudgins A W, Matlock D K. The effects of property differences in multiphase sheet steels on local formability [J]. Mater. Sci. Eng., 2016, A654: 169
|
2 |
Rana R. High-Performance Ferrous Alloys [M]. Cham: Springer, 2021: 113
|
3 |
Lesch C, Kwiaton N, Klose F B. Advanced high strength steels (AHSS) for automotive applications—Tailored properties by smart microstructural adjustments [J]. Steel Res. Int., 2017, 88: 1700210
|
4 |
Xue J Z. Study on microstructure control and hole expansion performance of 800 MPa grade hot-rolled complex phase steels [D]. Beijing: University of Science and Technology Beijing, 2021
|
4 |
薛建忠. 800 MPa级热轧复相钢的组织控制及扩孔性能研究 [D]. 北京: 北京科技大学, 2021
|
5 |
Feistle M, Golle R, Volk W. Edge crack test methods for AHSS steel grades: A review and comparisons [J]. J. Mater. Process. Technol., 2022, 302: 117488
|
6 |
Paul S K. A critical review on hole expansion ratio [J]. Materialia, 2020, 9: 100566
|
7 |
Cao J, Banu M. Opportunities and challenges in metal forming for lightweighting: Review and future work [J]. J. Manuf. Sci. Eng., 2020, 142: 110813
|
8 |
Pathak N, Butcher C, Worswick M. Assessment of the critical parameters influencing the edge stretchability of advanced high-strength steel sheet [J]. J. Mater. Eng. Perform., 2016, 25: 4919
|
9 |
Schneider M, Geffert A, Peshekhodov I, et al. Overview and comparison of various test methods to determine formability of a sheet metal cut-edge and approaches to the test results application in forming analysis [J]. Materialwiss. Werkstofftech., 2015, 46: 1196
|
10 |
Bharathy R S, Venugopalan T, Ghosh M. Effect of precipitation characteristics on mechanical properties and stretch flangeability of nano-dispersion strengthened high strength ferritic steel [J]. Metallogr. Microstruct. Anal., 2023, 12: 74
|
11 |
Reddy A C S, Rajesham S, Reddy P R, et al. Formability: A review on different sheet metal tests for formability [J]. AIP Conf. Proc., 2020, 2269: 030026
|
12 |
Song E, Lee G H, Jeon H, et al. Stretch-flangeability correlated with hardness distribution and strain-hardenability of constituent phases in dual- and complex-phase steels [J]. Mater. Sci. Eng., 2021, A817: 141353
|
13 |
Efthymiadis P, Hazra S, Clough A, et al. Revealing the mechanical and microstructural performance of multiphase steels during tensile, forming and flanging operations [J]. Mater. Sci. Eng., 2017, A701: 174
|
14 |
Hu J, Du L X, Wang J J. Effect of cooling procedure on microstructures and mechanical properties of hot rolled Nb-Ti bainitic high strength steel [J]. Mater. Sci. Eng., 2012, A554: 79
|
15 |
Zhang J S. Development of hot rolled high strength steels with high hole expansion ratio in Baosteel [A]. 2011 CSM Annual Meeting Proceedings [C]. Beijing: Metallurgical Industry Press, 2011: 3843
|
15 |
张建苏. 热轧高强度高扩孔钢研究在宝钢的发展 [A]. 第八届(2011)中国钢铁年会论文集 [C]. 北京: 冶金工业出版社, 2011: 3843
|
16 |
Scott C P, Amirkhiz B S, Pushkareva I, et al. New insights into martensite strength and the damage behaviour of dual phase steels [J]. Acta Mater., 2018, 159: 112
|
17 |
Wu Y J, Uusitalo J, DeArdo A J. Investigation of the critical factors controlling sheared edge stretching of ultra-high strength dual-phase steels [J]. Mater. Sci. Eng., 2021, A828: 142070
|
18 |
Pathak N, Butcher C, Worswick M J, et al. Damage evolution in complex-phase and dual-phase steels during edge stretching [J]. Materials, 2017, 10: 346
|
19 |
Hasegawa K, Kawamura K, Urabe T, et al. Effects of microstructure on stretch-flange-formability of 980 MPa grade cold-rolled ultra high strength steel sheets [J]. ISIJ Int., 2004, 44: 603
|
20 |
Frómeta D, Cuadrado N, Rehrl J, et al. Microstructural effects on fracture toughness of ultra-high strength dual phase sheet steels [J]. Mater. Sci. Eng., 2021, A802: 140631
|
21 |
Yang X Y, Yang Y G, Fang X, et al. Improving flangeability of multiphase steel by increasing microstructural homogeneity [J]. J. Iron Steel Res. Int., 2024, 31: 1736
|
22 |
Lan L Y, Yu M, Qiu C L. On the local mechanical properties of isothermally transformed bainite in low carbon steel [J]. Mater. Sci. Eng., 2019, A742: 442
|
23 |
Nanda T, Singh V, Singh G, et al. Processing routes, resulting microstructures, and strain rate dependent deformation behaviour of advanced high strength steels for automotive applications [J]. Archiv. Civ. Mech. Eng., 2021, 21: 7
|
24 |
Wang Y, Xu Y B, Wang X, et al. Improving the stretch flangeability of ultra-high strength TRIP-assisted steels by introducing banded structure [J]. Mater. Sci. Eng., 2022, A852: 143722
|
25 |
Mao X P, Huo X D, Sun X J, et al. Strengthening mechanisms of a new 700 MPa hot rolled Ti-microalloyed steel produced by compact strip production [J]. J. Mater. Process. Technol., 2010, 210: 1660
|
26 |
Yu H, Chen Q X, Kang Y L, et al. Microstructural research on hot strips of low carbon steel produced by a compact strip production line under different thermal histories [J]. Mater. Charact., 2005, 54: 347
|
27 |
Zhou D G, Fu J, Kang Y L, et al. Metallurgical quality of CSP thin slabs [J]. J. Univ. Sci. Technol. Beijing, 2004, 11: 106
|
28 |
Yoon J I, Lee H H, Jung J, et al. Effect of grain size on stretch-flangeability of twinning-induced plasticity steels [J]. Mater. Sci. Eng., 2018, A735: 295
|
29 |
Wu Y J, Uusitalo J, DeArdo A J. Investigation of effects of processing on stretch-flangeability of the ultra-high strength, vanadium-bearing dual-phase steels [J]. Mater. Sci. Eng., 2020, A797: 140094
|
30 |
Chen J H, Kikuta Y, Araki T, et al. Micro-fracture behaviour induced by M-A constituent (island martensite) in simulated welding heat affected zone of HT80 high strength low alloyed steel [J]. Acta Metall., 1984, 32: 1779
|
31 |
Liu K, Cheng S S, Li J P, et al. Effect of solidifying structure on centerline segregation of S50C steel produced by compact strip production [J]. Coatings, 2021, 11: 1497
|
32 |
Levy B S, Van Tyne C J. Review of the shearing process for sheet steels and its effect on sheared-edge stretching [J]. J. Mater. Eng. Perform., 2012, 21: 1205
|
33 |
Hamada S, Zhang K J, Zhang J W, et al. Effect of shear-affected zone on fatigue crack propagation mode [J]. Int. J. Fatigue, 2018, 116: 36
|
34 |
Chang Y, Zhang J R, Han S, et al. Influence of cutting process on the flanging formability of the cut edge for DP980 steel [J]. Metals, 2023, 13: 948
|
35 |
Chen X P, Jiang H M, Cui Z X, et al. Hole expansion characteristics of ultra high strength steels [J]. Procedia Eng., 2014, 81: 718
|
36 |
Guo H, Li Q, Fan Y P, et al. Bainite transformation behavior, microstructural feature and mechanical properties of nanostructured bainitic steel subjected to ausforming with different strain [J]. J. Mater. Res. Technol., 2020, 9: 9206
|
37 |
Gao G H, Liu R, Fan Y S, et al. Mechanism of subsurface microstructural fatigue crack initiation during high and very-high cycle fatigue of advanced bainitic steels [J]. J. Mater. Sci. Technol., 2022, 108: 142
doi: 10.1016/j.jmst.2021.08.060
|
38 |
Karelova A, Krempaszky C, Werner E, et al. Hole expansion of dual-phase and complex-phase AHS steels—Effect of edge conditions [J]. Steel Res. Int., 2009, 80: 71
|
39 |
Barnwal V K, Lee S Y, Yoon S Y, et al. Fracture characteristics of advanced high strength steels during hole expansion test [J]. Int. J. Fract., 2020, 224: 217
|
40 |
Pineau A, Benzerga A A, Pardoen T. Failure of metals I: Brittle and ductile fracture [J]. Acta Mater., 2016, 107: 424
|
41 |
Wciślik W, Lipiec S. Void-induced ductile fracture of metals: Experimental observations [J]. Materials, 2022, 15: 6473
|
42 |
Goods S H, Brown L M. Overview No. 1: The nucleation of cavities by plastic deformation [J]. Acta Metall., 1979, 27: 1
|
43 |
Barsoum I, Faleskog J. Rupture mechanisms in combined tension and shear—Micromechanics [J]. Int. J. Solids Struct., 2007, 44: 5481
|
44 |
Cox T B, Low J R. An investigation of the plastic fracture of AISI 4340 and 18 Nickel-200 grade maraging steels [J]. Metall. Trans., 1974, 5: 1457
|
45 |
Benzerga A A, Besson J, Pineau A. Anisotropic ductile fracture: Part I: Experiments [J]. Acta Mater., 2004, 52: 4623
|
46 |
Tvergaard V. Effect of stress-state and spacing on voids in a shear-field [J]. Int. J. Solids Struct., 2012, 49: 3047
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|