Please wait a minute...
金属学报  2025, Vol. 61 Issue (5): 674-686    DOI: 10.11900/0412.1961.2024.00285
  研究论文 本期目录 | 过刊浏览 |
马氏体-奥氏体组元特征分布对复相钢扩孔行为的影响
杨晓宇1,2, 米振莉1(), 方幸1, 刘航瑞1, 牟望重2,3()
1 北京科技大学 工程技术研究院 北京 100083
2 Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE 100 44, Stockholm, Sweden
3 Engineering Materials, Lulea University of Technology, SE 971 87, Lulea, Sweden
Achieving an Excellent Hole Expansion Behavior in Complex Phase Steels by Characteristic Distribution of Martensite-Austenite Constituents
YANG Xiaoyu1,2, MI Zhenli1(), FANG Xing1, LIU Hangrui1, MU Wangzhong2,3()
1 Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
2 Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE 100 44, Stockholm, Sweden
3 Engineering Materials, Lulea University of Technology, SE 971 87, Lulea, Sweden
引用本文:

杨晓宇, 米振莉, 方幸, 刘航瑞, 牟望重. 马氏体-奥氏体组元特征分布对复相钢扩孔行为的影响[J]. 金属学报, 2025, 61(5): 674-686.
Xiaoyu YANG, Zhenli MI, Xing FANG, Hangrui LIU, Wangzhong MU. Achieving an Excellent Hole Expansion Behavior in Complex Phase Steels by Characteristic Distribution of Martensite-Austenite Constituents[J]. Acta Metall Sin, 2025, 61(5): 674-686.

全文: PDF(5987 KB)   HTML
摘要: 

复相钢兼具高强度和良好的局部可成形性,被广泛应用于汽车车架导轨、摇臂板和隧道加强件等典型汽车零部件。复相钢中各类微观结构之间较小的硬度差异使其具有优异的扩孔性能,其中高硬度马氏体-奥氏体(MA)组元是影响复相钢扩孔性能的关键组织,其分布对扩孔性能的影响至关重要。本工作提出了构造厚度中心沿轧向连续分布MA组元以提升复相钢扩孔率的方法,利用CLSM、SEM、EBSD手段和扩孔实验,研究了构造MA组元特征分布前后复相钢的微观结构和扩孔行为特性。结果表明,基准钢的MA组元均匀分布,长轴为0.98 μm,平均中心间距为1.2 μm。构造特征组织后的实验用钢MA组元聚集在厚度中心,长轴约1.25 μm,沿轧向连续分布,平均间距小于1.0 μm。微观硬度量化冲裁边的塑性损伤结果表明,冲孔损伤后实验钢板厚度中心处硬化最高,较损伤前硬化41%,高于基准钢最大硬化区(毛刺区,31%)。冲孔损伤更高的实验用钢的扩孔率约43%,高于基准钢(约34%)。利用准原位中断扩孔实验分析了扩孔行为与显微组织特征的关系。实验用钢通过多孔隙相互作用机制在厚度中心处形成环状裂纹促使应力释放,同时在基体中通过单一孔隙机制形成坑状损伤,导致材料局部失稳并最终失效。受损质点处于孔缘位置对断裂方式具有一定程度的影响。

关键词 复相钢马氏体-奥氏体(MA)组元扩孔率断裂    
Abstract

Complex phase (CP) steels are widely used in automotive components such as frame rails, rocker panels, and tunnel stiffeners owing to their high strength and good local formability. The subtle hardness difference between microstructures allows CP steels to exhibit excellent hole expansion performance, with the high-hardness martensite-austenite (MA) constituents being the critical structure. The distribution of MA constituents is crucial to the mechanical properties of the product. This study aims to improve the hole expansion property by constructing a continuous distribution of MA constituents along the rolling direction at the thickness center. Microstructures and hole expansion behavior were investigated using CLSM, SEM, EBSD, and hole expansion tests. Results indicate that after thermodynamic treatment, the MA constituents were aggregated at the thickness center in a continuous distribution along the rolling direction with a long axis of approximately 1.25 μm, and an average distance of less than 1.0 μm. Microhardness quantification of the plastic damage on the punching edge suggests that the advanced steel exhibits the highest hardening at the thickness center with a 41% hardness increase after punching, which is higher than the 31% hardening in the maximum hardening burr zone of the base steel. The advanced steel, despite suffering severe punching damage, exhibited a hole expansion ratio of approximately 43%, higher than the 34% of the base steel. Quasi in situ interrupted hole expansion tests indicate that at the thickness center of the advanced steel, the circumferential cracks formed through a multiple void interaction mechanism which promotes the stress release. In the matrix, pit-like damage is caused by a void coalescence mechanism. Both mechanisms lead to the mechanical instability and eventual failure of the steel. The damaging position of the hole edge had a decisive impact on the fracture mode.

Key wordscomplex phase steel    martensite-austenite (MA) constituent    hole expansion ratio    fracture
收稿日期: 2024-08-16     
ZTFLH:  TG337.5  
基金资助:国家自然科学基金项目(52274372);瑞典教育与研究理事会项目(IB2022-9228)
通讯作者: 米振莉,mizl@nercar.ustb.edu.cn,主要从事金属材料深加工的研究;
牟望重,wangzhong.mu@ltu.se,主要从事高品质钢智能制造及材料设计方面的研究
Corresponding author: MI Zhenli, professor, Tel: (010)62332598-6609, E-mail: mizl@nercar.ustb.edu.cn;
MU Wangzhong, associate professor, Tel: +46-0920-493644, E-mail: wangzhong.mu@ltu.se
作者简介: 杨晓宇,女,1997年生,博士生
TypeCSiMnPSTiAlsCrNFe
Base steel0.060.051.700.0100.00280.120.0390.360.0054Bal.
Advanced steel0.050.251.600.0170.00450.130.0270.400.0023Bal.
表1  基准钢和实验用钢的主要化学成分 (mass fraction / %)
图1  ISO 16630标准扩孔测试示意图
图2  中断扩孔实验取样位置及观察面
图3  热轧显微组织的OM像、SEM-SE像及EBSD像
图4  剪切影响区(SAZ)的硬化损伤特征
图5  基准钢和实验用钢在预损伤和无损伤下完成扩孔后孔缘形貌的OM和SEM-SE像
图6  基准钢和实验用钢冲头位移15 mm时孔缘表征区域显微组织的OM和SEM-SE像
图7  基准钢和实验用钢冲头位移25 mm时孔缘表征区域显微组织的OM和SEM-SE像
图8  基准钢和实验用钢在扩孔变形过程中从初始、损伤至失效示意图
1 Hudgins A W, Matlock D K. The effects of property differences in multiphase sheet steels on local formability [J]. Mater. Sci. Eng., 2016, A654: 169
2 Rana R. High-Performance Ferrous Alloys [M]. Cham: Springer, 2021: 113
3 Lesch C, Kwiaton N, Klose F B. Advanced high strength steels (AHSS) for automotive applications—Tailored properties by smart microstructural adjustments [J]. Steel Res. Int., 2017, 88: 1700210
4 Xue J Z. Study on microstructure control and hole expansion performance of 800 MPa grade hot-rolled complex phase steels [D]. Beijing: University of Science and Technology Beijing, 2021
4 薛建忠. 800 MPa级热轧复相钢的组织控制及扩孔性能研究 [D]. 北京: 北京科技大学, 2021
5 Feistle M, Golle R, Volk W. Edge crack test methods for AHSS steel grades: A review and comparisons [J]. J. Mater. Process. Technol., 2022, 302: 117488
6 Paul S K. A critical review on hole expansion ratio [J]. Materialia, 2020, 9: 100566
7 Cao J, Banu M. Opportunities and challenges in metal forming for lightweighting: Review and future work [J]. J. Manuf. Sci. Eng., 2020, 142: 110813
8 Pathak N, Butcher C, Worswick M. Assessment of the critical parameters influencing the edge stretchability of advanced high-strength steel sheet [J]. J. Mater. Eng. Perform., 2016, 25: 4919
9 Schneider M, Geffert A, Peshekhodov I, et al. Overview and comparison of various test methods to determine formability of a sheet metal cut-edge and approaches to the test results application in forming analysis [J]. Materialwiss. Werkstofftech., 2015, 46: 1196
10 Bharathy R S, Venugopalan T, Ghosh M. Effect of precipitation characteristics on mechanical properties and stretch flangeability of nano-dispersion strengthened high strength ferritic steel [J]. Metallogr. Microstruct. Anal., 2023, 12: 74
11 Reddy A C S, Rajesham S, Reddy P R, et al. Formability: A review on different sheet metal tests for formability [J]. AIP Conf. Proc., 2020, 2269: 030026
12 Song E, Lee G H, Jeon H, et al. Stretch-flangeability correlated with hardness distribution and strain-hardenability of constituent phases in dual- and complex-phase steels [J]. Mater. Sci. Eng., 2021, A817: 141353
13 Efthymiadis P, Hazra S, Clough A, et al. Revealing the mechanical and microstructural performance of multiphase steels during tensile, forming and flanging operations [J]. Mater. Sci. Eng., 2017, A701: 174
14 Hu J, Du L X, Wang J J. Effect of cooling procedure on microstructures and mechanical properties of hot rolled Nb-Ti bainitic high strength steel [J]. Mater. Sci. Eng., 2012, A554: 79
15 Zhang J S. Development of hot rolled high strength steels with high hole expansion ratio in Baosteel [A]. 2011 CSM Annual Meeting Proceedings [C]. Beijing: Metallurgical Industry Press, 2011: 3843
15 张建苏. 热轧高强度高扩孔钢研究在宝钢的发展 [A]. 第八届(2011)中国钢铁年会论文集 [C]. 北京: 冶金工业出版社, 2011: 3843
16 Scott C P, Amirkhiz B S, Pushkareva I, et al. New insights into martensite strength and the damage behaviour of dual phase steels [J]. Acta Mater., 2018, 159: 112
17 Wu Y J, Uusitalo J, DeArdo A J. Investigation of the critical factors controlling sheared edge stretching of ultra-high strength dual-phase steels [J]. Mater. Sci. Eng., 2021, A828: 142070
18 Pathak N, Butcher C, Worswick M J, et al. Damage evolution in complex-phase and dual-phase steels during edge stretching [J]. Materials, 2017, 10: 346
19 Hasegawa K, Kawamura K, Urabe T, et al. Effects of microstructure on stretch-flange-formability of 980 MPa grade cold-rolled ultra high strength steel sheets [J]. ISIJ Int., 2004, 44: 603
20 Frómeta D, Cuadrado N, Rehrl J, et al. Microstructural effects on fracture toughness of ultra-high strength dual phase sheet steels [J]. Mater. Sci. Eng., 2021, A802: 140631
21 Yang X Y, Yang Y G, Fang X, et al. Improving flangeability of multiphase steel by increasing microstructural homogeneity [J]. J. Iron Steel Res. Int., 2024, 31: 1736
22 Lan L Y, Yu M, Qiu C L. On the local mechanical properties of isothermally transformed bainite in low carbon steel [J]. Mater. Sci. Eng., 2019, A742: 442
23 Nanda T, Singh V, Singh G, et al. Processing routes, resulting microstructures, and strain rate dependent deformation behaviour of advanced high strength steels for automotive applications [J]. Archiv. Civ. Mech. Eng., 2021, 21: 7
24 Wang Y, Xu Y B, Wang X, et al. Improving the stretch flangeability of ultra-high strength TRIP-assisted steels by introducing banded structure [J]. Mater. Sci. Eng., 2022, A852: 143722
25 Mao X P, Huo X D, Sun X J, et al. Strengthening mechanisms of a new 700 MPa hot rolled Ti-microalloyed steel produced by compact strip production [J]. J. Mater. Process. Technol., 2010, 210: 1660
26 Yu H, Chen Q X, Kang Y L, et al. Microstructural research on hot strips of low carbon steel produced by a compact strip production line under different thermal histories [J]. Mater. Charact., 2005, 54: 347
27 Zhou D G, Fu J, Kang Y L, et al. Metallurgical quality of CSP thin slabs [J]. J. Univ. Sci. Technol. Beijing, 2004, 11: 106
28 Yoon J I, Lee H H, Jung J, et al. Effect of grain size on stretch-flangeability of twinning-induced plasticity steels [J]. Mater. Sci. Eng., 2018, A735: 295
29 Wu Y J, Uusitalo J, DeArdo A J. Investigation of effects of processing on stretch-flangeability of the ultra-high strength, vanadium-bearing dual-phase steels [J]. Mater. Sci. Eng., 2020, A797: 140094
30 Chen J H, Kikuta Y, Araki T, et al. Micro-fracture behaviour induced by M-A constituent (island martensite) in simulated welding heat affected zone of HT80 high strength low alloyed steel [J]. Acta Metall., 1984, 32: 1779
31 Liu K, Cheng S S, Li J P, et al. Effect of solidifying structure on centerline segregation of S50C steel produced by compact strip production [J]. Coatings, 2021, 11: 1497
32 Levy B S, Van Tyne C J. Review of the shearing process for sheet steels and its effect on sheared-edge stretching [J]. J. Mater. Eng. Perform., 2012, 21: 1205
33 Hamada S, Zhang K J, Zhang J W, et al. Effect of shear-affected zone on fatigue crack propagation mode [J]. Int. J. Fatigue, 2018, 116: 36
34 Chang Y, Zhang J R, Han S, et al. Influence of cutting process on the flanging formability of the cut edge for DP980 steel [J]. Metals, 2023, 13: 948
35 Chen X P, Jiang H M, Cui Z X, et al. Hole expansion characteristics of ultra high strength steels [J]. Procedia Eng., 2014, 81: 718
36 Guo H, Li Q, Fan Y P, et al. Bainite transformation behavior, microstructural feature and mechanical properties of nanostructured bainitic steel subjected to ausforming with different strain [J]. J. Mater. Res. Technol., 2020, 9: 9206
37 Gao G H, Liu R, Fan Y S, et al. Mechanism of subsurface microstructural fatigue crack initiation during high and very-high cycle fatigue of advanced bainitic steels [J]. J. Mater. Sci. Technol., 2022, 108: 142
doi: 10.1016/j.jmst.2021.08.060
38 Karelova A, Krempaszky C, Werner E, et al. Hole expansion of dual-phase and complex-phase AHS steels—Effect of edge conditions [J]. Steel Res. Int., 2009, 80: 71
39 Barnwal V K, Lee S Y, Yoon S Y, et al. Fracture characteristics of advanced high strength steels during hole expansion test [J]. Int. J. Fract., 2020, 224: 217
40 Pineau A, Benzerga A A, Pardoen T. Failure of metals I: Brittle and ductile fracture [J]. Acta Mater., 2016, 107: 424
41 Wciślik W, Lipiec S. Void-induced ductile fracture of metals: Experimental observations [J]. Materials, 2022, 15: 6473
42 Goods S H, Brown L M. Overview No. 1: The nucleation of cavities by plastic deformation [J]. Acta Metall., 1979, 27: 1
43 Barsoum I, Faleskog J. Rupture mechanisms in combined tension and shear—Micromechanics [J]. Int. J. Solids Struct., 2007, 44: 5481
44 Cox T B, Low J R. An investigation of the plastic fracture of AISI 4340 and 18 Nickel-200 grade maraging steels [J]. Metall. Trans., 1974, 5: 1457
45 Benzerga A A, Besson J, Pineau A. Anisotropic ductile fracture: Part I: Experiments [J]. Acta Mater., 2004, 52: 4623
46 Tvergaard V. Effect of stress-state and spacing on voids in a shear-field [J]. Int. J. Solids Struct., 2012, 49: 3047
[1] 李新宇, 白佳铭, 张浩鹏, 李晓鲲, 贾建, 刘常升, 刘建涛, 张义文. 先进镍基粉末高温合金FGH4108在不同应力条件下的蠕变行为[J]. 金属学报, 2025, 61(5): 757-769.
[2] 周婷婷, 赵福祺, 周洪强, 张凤国, 殷建伟. He泡液态金属铝的动态拉伸断裂机制与损伤模型[J]. 金属学报, 2025, 61(4): 643-652.
[3] 张浩鹏, 白佳铭, 李新宇, 李晓鲲, 贾建, 刘建涛, 张义文. HfTa对镍基粉末高温合金蠕变断裂特征和性能的影响[J]. 金属学报, 2025, 61(4): 583-596.
[4] 王旗涛, 李艳芬, 张家榕, 李尧志, 付海阳, 李新乐, 严伟, 单以银. 聚变增殖包层用低活化9Cr-ODS钢的室温低周疲劳行为[J]. 金属学报, 2025, 61(2): 323-335.
[5] 唐景韬, 姚英杰, 张游游, 吴文华, 李宇博, 陈浩, 杨志刚. 高强钢中亚稳奥氏体对断裂韧性影响的研究进展[J]. 金属学报, 2025, 61(1): 77-87.
[6] 谭子昊, 李永梅, 王新广, 赵浩川, 谭海兵, 王标, 李金国, 周亦胄, 孙晓峰. 一种第四代镍基单晶高温合金的同相位热机械疲劳行为及损伤机制[J]. 金属学报, 2024, 60(2): 154-166.
[7] 唐旭, 张昊, 薛鹏, 吴利辉, 刘峰超, 朱正旺, 倪丁瑞, 肖伯律, 马宗义. 铸态及激光粉末床熔融AlCoCrFeNi2.1 共晶高熵合金的微观组织及力学性能[J]. 金属学报, 2024, 60(11): 1461-1470.
[8] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[9] 谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
[10] 彭子超, 刘培元, 王旭青, 罗学军, 刘健, 邹金文. 不同服役条件下FGH96合金的蠕变特征[J]. 金属学报, 2022, 58(5): 673-682.
[11] 赵永好, 毛庆忠. 纳米金属结构材料的韧化[J]. 金属学报, 2022, 58(11): 1385-1398.
[12] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[13] 范国华, 缪克松, 李丹阳, 夏夷平, 吴昊. 从局域应力/应变视角理解异构金属材料的强韧化行为[J]. 金属学报, 2022, 58(11): 1427-1440.
[14] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[15] 周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.