Please wait a minute...
金属学报  2024, Vol. 60 Issue (10): 1418-1428    DOI: 10.11900/0412.1961.2024.00140
  研究论文 本期目录 | 过刊浏览 |
氢化物超导体临界转变温度的机器学习模型
赵晋彬1,2, 王建韬2,3, 何东昌2,3, 李俊林1, 孙岩2, 陈星秋2(), 刘培涛2()
1 太原科技大学 材料科学与工程学院 太原 030024
2 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
3 中国科学技术大学 材料科学与工程学院 沈阳 110016
Machine Learning Model for Predicting the Critical Transition Temperature of Hydride Superconductors
ZHAO Jinbin1,2, WANG Jiantao2,3, HE Dongchang2,3, LI Junlin1, SUN Yan2, CHEN Xing-Qiu2(), LIU Peitao2()
1 School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

赵晋彬, 王建韬, 何东昌, 李俊林, 孙岩, 陈星秋, 刘培涛. 氢化物超导体临界转变温度的机器学习模型[J]. 金属学报, 2024, 60(10): 1418-1428.
Jinbin ZHAO, Jiantao WANG, Dongchang HE, Junlin LI, Yan SUN, Xing-Qiu CHEN, Peitao LIU. Machine Learning Model for Predicting the Critical Transition Temperature of Hydride Superconductors[J]. Acta Metall Sin, 2024, 60(10): 1418-1428.

全文: PDF(1961 KB)   HTML
摘要: 

高压下发现的具有高临界转变温度(Tc)的氢化物超导体激起了研究者对常压室温超导材料探索的广泛兴趣。尽管第一性原理方法可以准确预测氢化物超导体的Tc,但电声耦合计算量巨大且十分昂贵,因此迫切需要建立一个既准确又高效的Tc预测模型。本工作利用随机森林算法,根据特征的重要性选择最关键的特征,开发了一个简单且物理可解释的机器学习模型。该模型利用所选择的4个关键特征(即组成元素价电子数标准差、共价半径平均值和门捷列夫数(Mendeleev数)范围,以及Fermi能级处H的态密度占比)实现了高的Tc预测精度(平均绝对误差为24.3 K,均方根误差为33.6 K),这为氢化物超导体的高通量筛选提供了有效预测模型,有助于加速高Tc超导氢化物的发现。

关键词 氢化物超导体超导转变温度机器学习随机森林第一性原理计算    
Abstract

The discovery of hydride superconductors with high critical transition temperature (Tc) under high pressures has received considerable interest in developing superconducting materials that can operate at room temperature and ambient pressure. Although first-principles methods can accurately predict the critical temperature of hydride superconductors, the computational demands are significant because of the expensive calculation of electron-phonon coupling. Hence, constructing an accurate and efficient model for predicting Tc is highly desirable. In this study, a simple and interpretable machine learning (ML) model was developed using the random forest algorithm, which enables the selection of important features based on their importance. Using four physics-based features, namely, the standard deviation of the number of valence electrons, mean covalent radii, range of the Mendeleev number of constituent elements, and hydrogen fraction of the total density of states at the Fermi energy, the optimal ML model achieves high accuracy, with a mean absolute error of 24.3 K and a root-mean-square error of 33.6 K. The ML model developed in this study shows great application potential for high-throughput screening, thereby expediting the discovery of high-Tc superconducting hydrides.

Key wordshydride superconductor    superconducting transition temperature    machine learning    random forest    first-principles calculation
收稿日期: 2024-05-08     
ZTFLH:  TG132.26  
基金资助:国家自然科学基金项目(52188101,52201030);国家重点研发计划项目(2021YFB3501503);中国科学院重点部署项目(ZDRW-CN-2021-2-5)
通讯作者: 刘培涛,ptliu@imr.ac.cn,主要从事材料的电子结构计算与原子模拟研究;
陈星秋,xingqiu.chen@imr.ac.cn,主要从事合金设计与计算研究
Corresponding author: LIU Peitao, professor, Tel: (024)23971560, E-mail: ptliu@imr.ac.cn;
CHEN Xing-Qiu, professor, Tel: (024)23971560, E-mail: xingqiu.chen@imr.ac.cn
作者简介: 赵晋彬,男,1991年生,博士生
图1  氢化物超导体的分布情况
ParameterMeaning of parameterValue
n-estimatorsNumber of decision trees10-30
Max-depthMaximum depth of decision treesNone, 1, 2, 4
Min-samples-splitMinimum number of samples required to split internal nodes2, 4, 8
Min-samples-leafMinimum number of samples at leaf nodes1, 2, 4, 8
表1  随机森林算法在sklearn库中使用的超参数(其他未明确指出的参数使用了默认值)
图2  单次训练下临界温度(Tc)的模型测试误差与特征数量的关系,及10次独立训练下的平均模型测试集误差与训练集占比的关系
图3  递归筛选出的最重要的4个特征,及所获得的最精确的机器学习模型预测的Tc与真值对比
图4  Tc与组成元素的价电子数的标准差、平均共价半径、Mendeleev数范围,及Fermi能级处H的电子态密度占比4个特征的相关性

Material

Pressure

GPa

HDOS

Range(Mendeleev Number)Mean(CovalentRadius)

Avg_dev

(NValence)

Tc (RF)

K

Tc (Belli)[59]

K

Tc (Expt.) K
Li2MgH162500.539147.00.10319.3298.3473.0[43]
CaHfH121900.288551.62.24324.9198.3363.0[60]
CaHfH183000.418545.51.62339.0332.0345.0[60]
CaZrH123000.318551.60.49308.2192.6343.0[60]
MgH125000.722439.50.14300.5522.4340.0[70]
YH102500.418045.60.33312.5259.6326.0[89]
MAE-----47.6125.3-
RMSE-----68.4140.3-
表2  针对数据集中6个Tc最高的氢化物超导材料的模型预测[43,59,60,70,89]
图5  数据集中6个Tc最高的氢化物超导材料的晶体结构和电子态密度
1 De Nobel J, Lindenfeld P. The discovery of superconductivity [J]. Phys. Today, 1996, 49: 40
2 Boeri L, Hennig R, Hirschfeld P, et al. The 2021 room-temperature superconductivity roadmap [J]. J. Phys. Condens. Matter, 2022, 34: 183002
3 Kim C J. Superconductor Levitation: Concepts and Experiments [M]. Singapore: Springer, 2019: 1
4 Mangin P, Kahn R. Superconductivity: An introduction [M]. Cham: Springer, 2017: 1
5 Meissner W, Ochsenfeld R. Ein neuer effekt bei eintritt der supraleitfähigkeit [J]. Naturwissenschaften, 1933, 21: 787
6 Hirsch J E, Maple M B, Marsiglio F. Superconducting materials classes: Introduction and overview [J]. Physica, 2015, 514C: 1
7 Bardeen J, Cooper L N, Schrieffer J R. Microscopic theory of superconductivity [J]. Phys. Rev., 1957, 106: 162
8 Bednorz J G, Müller K A. Possible high Tc superconductivity in the Ba-La-Cu-O system [J]. Z. Phys., 1986, 64B: 189
9 Keimer B, Kivelson S A, Norman M R, et al. From quantum matter to high-temperature superconductivity in copper oxides [J]. Nature, 2015, 518: 179
10 Wu M K, Ashburn J R, Torng C J, et al. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure [J]. Phys. Rev. Lett., 1987, 58: 908
pmid: 10035069
11 Schilling A, Cantoni M, Guo J D, et al. Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system [J]. Nature, 1993, 363: 56
12 Kamihara Y, Watanabe T, Hirano M, et al. Iron-based layered superconductor La[O1 - x F x ]FeAs (x = 0.05-0.12) with Tc = 26 K [J]. J. Am. Chem. Soc., 2008, 130: 3296
doi: 10.1021/ja800073m pmid: 18293989
13 Paglione J, Greene R L. High-temperature superconductivity in iron-based materials [J]. Nat. Phys., 2010, 6: 645
14 Wang Q Y, Li Z, Zhang W H, et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3 [J]. Chin. Phys. Lett., 2012, 29: 037402
15 Li D F, Lee K, Wang B Y, et al. Superconductivity in an infinite-layer nickelate [J]. Nature, 2019, 572: 624
16 Sun H L, Huo M W, Hu X W, et al. Signatures of superconductivity near 80 K in a nickelate under high pressure [J]. Nature, 2023, 621: 493
17 Li Q, Zhang Y J, Xiang Z N, et al. Signature of superconductivity in pressurized La4Ni3O10 [J]. Chin. Phys. Lett., 2024, 41: 017401
18 Zhang M X, Pei C Y, Du X, et al. Superconductivity in trilayer nickelate La4Ni3O10 under pressure [DB/OL]. arXiv: 2311. 07423, 2023
19 Wang M. Discovery of high-Tc superconductivity in a nickelate [J]. Physics, 2023, 52: 663
19 王 猛. 液氮温区镍氧化物高温超导体的发现 [J]. 物理, 2023, 52: 663
20 Pickett W E. Colloquium: Room temperature superconductivity: The roles of theory and materials design [J]. Rev. Mod. Phys., 2023, 95: 021001
21 Hu J P. Searching for new unconventional high temperature superconductors [J]. Acta Phys. Sin., 2021, 70(1): 017101
21 胡江平. 探索非常规高温超导体 [J]. 物理学报, 2021, 70(1): 017101
22 Li J X. Spin fluctuations and uncoventional superconducting pairing [J]. Acta Phys. Sin., 2021, 70(1): 017408
22 李建新. 自旋涨落与非常规超导配对 [J]. 物理学报, 2021, 70(1): 017408
23 Nagamatsu J, Nakagawa N, Muranaka T, et al. Superconductivity at 39 K in magnesium diboride [J]. Nature, 2001, 410: 63
24 Ashcroft N W. Metallic hydrogen: A high-temperature superconductor? [J]. Phys. Rev. Lett., 1968, 21: 1748
25 Ashcroft N W. Hydrogen dominant metallic alloys: High temperature superconductors? [J]. Phys. Rev. Lett., 2004, 92: 187002
26 Duan D F, Liu Y X, Tian F B, et al. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity [J]. Sci. Rep., 2014, 4: 6968
27 Gor'kov L P, Kresin V Z. Pressure and high-Tc superconductivity in sulfur hydrides [J]. Sci. Rep., 2016, 6: 25608
doi: 10.1038/srep25608 pmid: 27167334
28 Drozdov A P, Eremets M I, Troyan I A, et al. Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride system [J]. Nature, 2015, 525: 73
29 Liu H Y, Naumov I I, Geballe Z M, et al. Dynamics and superconductivity in compressed lanthanum superhydride [J]. Phys. Rev. B, 2018, 98: 100102
30 Somayazulu M, Ahart M, Mishra A K, et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures [J]. Phys. Rev. Lett., 2019, 122: 027001
31 Drozdov A P, Kong P P, Minkov V S, et al. Superconductivity at 250 K in lanthanum hydride under high pressures [J]. Nature, 2019, 569: 528
32 Eremets M I, Minkov V S, Drozdov A P, et al. High-temperature superconductivity in hydrides: Experimental evidence and details [J]. J. Supercond. Novel Magn., 2022, 35: 965
33 Zhang S B, Zhang M, Liu H Y. Superconductive hydrogen-rich compounds under high pressure [J]. Appl. Phys., 2021, 127A: 684
34 Troyan I A, Semenok D V, Kvashnin A G, et al. Anomalous high-temperature superconductivity in YH6 [J]. Adv. Mater., 2021, 33: 2006832
35 Snider E, Dasenbrock-Gammon N, McBride R, et al. RETRACTED: Synthesis of yttrium superhydride superconductor with a transition temperature up to 262 K by catalytic hydrogenation at high pressures [J]. Phys. Rev. Lett., 2021, 126: 117003
36 Semenok D V, Kvashnin A G, Ivanova A G, et al. Synthesis of ThH4, ThH6, ThH9 and ThH10: A route to room-temperature superconductivity [DB/OL]. arXiv: 1902. 10206, 2019
37 Semenok D V, Kvashnin A G, Ivanova A G, et al. Superconductivity at 161 K in thorium hydride ThH10: Synthesis and properties [J]. Mater. Today, 2020, 33: 36
38 Li B, Miao Z L, Ti L, et al. Predicted high-temperature superconductivity in cerium hydrides at high pressures [J]. J. Appl. Phys., 2019, 126: 235901
39 Chen W H, Semenok D V, Huang X L, et al. High-temperature superconducting phases in cerium superhydride with a Tc up to 115 K below a pressure of 1 megabar [J]. Phys. Rev. Lett., 2021, 127: 117001
40 Wang H, Tse J S, Tanaka K, et al. Superconductive sodalite-like clathrate calcium hydride at high pressures [J]. Proc. Natl. Acad. Sci. USA, 2012, 109: 6463
doi: 10.1073/pnas.1118168109 pmid: 22492976
41 Li Z W, He X, Zhang C L, et al. Superconductivity above 200 K discovered in superhydrides of calcium [J]. Nat. Commun., 2022, 13: 2863
doi: 10.1038/s41467-022-30454-w pmid: 35606357
42 Flores-Livas J A, Boeri L, Sanna A, et al. A perspective on conventional high-temperature superconductors at high pressure: Methods and materials [J]. Phys. Rep., 2020, 856: 1
43 Sun Y, Lv J, Xie Y, et al. Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure [J]. Phys. Rev. Lett., 2019, 123: 097001
44 Di Cataldo S, Von Der Linden W, Boeri L. Phase diagram and superconductivity of calcium borohyrides at extreme pressures [J]. Phys. Rev., 2020, 102B: 014516
45 Geng N S, Bi T G, Zurek E. Structural diversity and superconductivity in S-P-H ternary hydrides under pressure [J]. J. Phys. Chem., 2022, 126C: 7208
46 Grockowiak A D, Ahart M, Helm T, et al. Hot hydride superconductivity above 550 K [J]. Front. Electron. Mater., 2022, 2: 837651
47 Di Cataldo S, Boeri L. Metal borohydrides as ambient-pressure high-Tc superconductors [J]. Phys. Rev., 2023, 107B: L060501
48 Song P, Hou Z F, Baptista De Castro P, et al. High-pressure Mg-Sc-H phase diagram and its superconductivity from first-principles calculations [J]. J. Phys. Chem., 2022, 126C: 2747
49 Shutov G M, Semenok D V, Kruglov I A, et al. Ternary superconducting hydrides in the La-Mg-H system [J]. Mater. Today Phys., 2024, 40: 101300
50 Chen W H, Huang X L, Semenok D V, et al. Enhancement of superconducting properties in the La-Ce-H system at moderate pressures [J]. Nat. Commun., 2023, 14: 2660
doi: 10.1038/s41467-023-38254-6 pmid: 37160883
51 Zhao W D, Huang X L, Zhang Z H, et al. Superconducting ternary hydrides: Progress and challenges [J]. Natl. Sci. Rev., 2024, 11: nwad307
52 Gao M, Yan X W, Lu Z Y, et al. Phonon-mediated high-temperature superconductivity in the ternary borohydride KB2H8 under pressure near 12 GPa [J]. Phys. Rev., 2021, 104B: L100504
53 Zhang Z H, Cui T, Hutcheon M J, et al. Design principles for high-temperature superconductors with a hydrogen-based alloy backbone at moderate pressure [J]. Phys. Rev. Lett., 2022, 128: 047001
54 Song Y G, Bi J K, Nakamoto Y, et al. Stoichiometric ternary superhydride LaBeH8 as a new template for high-temperature superconductivity at 110 K under 80 GPa [J]. Phys. Rev. Lett., 2023, 130: 266001
55 Zhao W D, Duan D F, Du M Y, et al. Pressure-induced high-Tc superconductivity in the ternary clathrate system Y-Ca-H [J]. Phys. Rev., 2022, 106B: 014521
56 Du M Y, Song H, Zhang Z H, et al. Room-temperature superconductivity in Yb/Lu substituted clathrate hexahydrides under moderate pressure [J]. Research, 2022, 2022: 9784309
57 Sanna A, Cerqueira T F T, Fang Y W, et al. Prediction of ambient pressure conventional superconductivity above 80 K in hydride compounds [J]. npj Comput. Mater., 2024, 10: 44
58 Dolui K, Conway L J, Heil C, et al. Feasible route to high-temperature ambient-pressure hydride superconductivity [J]. Phys. Rev. Lett., 2024, 132: 166001
59 Belli F, Novoa T, Contreras-García J, et al. Strong correlation between electronic bonding network and critical temperature in hydrogen-based superconductors [J]. Nat. Commun., 2021, 12: 5381
doi: 10.1038/s41467-021-25687-0 pmid: 34531389
60 Liu L L, Peng F, Song P, et al. Generic rules for achieving room-temperature superconductivity in ternary hydrides with clathrate structures [J]. Phys. Rev., 2023, 107B: L020504
61 Marsiglio F. Eliashberg theory: A short review [J]. Ann. Phys., 2020, 417: 168102
62 Éliashberg G M. Interactions between electrons and lattice vibrations in a superconductor [J]. Sov. Phys. JETP, 1960, 11: 696
63 Dynes R C. McMillan's equation and the Tc of superconductors [J]. Solid State Commun., 1972, 10: 615
64 Allen P B, Dynes R C. Transition temperature of strong-coupled superconductors reanalyzed [J]. Phys. Rev., 1975, 12B: 905
65 McMillan W L. Transition temperature of strong-coupled superconductors [J]. Phys. Rev., 1968, 167: 331
66 Oliveira L N, Gross E K U, Kohn W. Density-functional theory for superconductors [J]. Phys. Rev. Lett., 1988, 60: 2430
pmid: 10038349
67 Marques M A L, Lüders M, Lathiotakis N N, et al. Ab initio theory of superconductivity. II. Application to elemental metals [J]. Phys. Rev., 2005, 72B: 024546
68 Lüders M, Marques M A L, Lathiotakis N N, et al. Ab initio theory of superconductivity. I. Density functional formalism and approximate functionals [J]. Phys. Rev., 2005, 72B: 024545
69 Choudhary K, Garrity K. Designing high-TC superconductors with BCS-inspired screening, density functional theory, and deep-learning [J]. npj Comput. Mater., 2022, 8: 244
70 Shipley A M, Hutcheon M J, Needs R J, et al. High-throughput discovery of high-temperature conventional superconductors [J]. Phys. Rev., 2021, 104B: 054501
71 Saha S, Di Cataldo S, Giannessi F, et al. Mapping superconductivity in high-pressure hydrides: The Superhydra project [J]. Phys. Rev. Mater., 2023, 7: 054806
72 Sommer T, Willa R, Schmalian J, et al. 3DSC—A dataset of superconductors including crystal structures [J]. Sci. Data, 2023, 10: 816
doi: 10.1038/s41597-023-02721-y pmid: 37990027
73 Cerqueira T F T, Sanna A, Marques M A L. Sampling the materials space for conventional superconducting compounds [J]. Adv. Mater., 2024, 36: 2307085
74 Stanev V, Oses C, Kusne A G, et al. Machine learning modeling of superconducting critical temperature [J]. npj Comput. Mater., 2018, 4: 29
75 Breiman L. Random forests [J]. Mach. Learn., 2001, 45: 5
76 MDR. MDR SuperCon Datasheet Ver.220808 [EB/OL]. (2022-16-12)[Date·Cite].
77 Hutcheon M J, Shipley A M, Needs R J. Predicting novel superconducting hydrides using machine learning approaches [J]. Phys. Rev., 2020, 101B: 144505
78 Liu Y, Huang H Y, Yuan J, et al. Upper limit of the transition temperature of superconducting materials [J]. Patterns, 2023, 4: 100841
79 Wines D, Choudhary K. Data-driven design of high pressure hydride superconductors using DFT and deep learning [J]. Mater. Futures, 2024, 3: 025602
80 Ward L, Dunn A, Faghaninia A, et al. Matminer: An open source toolkit for materials data mining [J]. Comput. Mater. Sci., 2018, 152: 60
81 Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev., 1996, 54B: 11169
82 Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals [J]. Phys. Rev., 1993, 47B: 558
83 Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865 pmid: 10062328
84 Wang V, Xu N, Liu J C, et al. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code [J]. Comput. Phys. Commun., 2021, 267: 108033
85 Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine learning in python [J]. J. Mach. Learn. Res., 2011, 12: 2825
86 Pettifor D G. A chemical scale for crystal-structure maps [J]. Solid State Commun., 1984, 51: 31
87 Pettifor D G. The structures of binary compounds. I. Phenomenological structure maps [J]. J. Phys., 1986, 19C: 285
88 Villars P, Cenzual K, Daams J, et al. Data-driven atomic environment prediction for binaries using the Mendeleev number: Part 1. Composition AB [J]. J. Alloys Compd., 2004, 367: 167
89 Liu H Y, Naumov I I, Hoffmann R, et al. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure [J]. Proc. Natl. Acad. Sci. USA, 2017, 114: 6990
[1] 王京京, 姚志浩, 张鹏, 赵杰, 张迈, 王蕾, 董建新, 陈迎. 镍基高温合金中S元素对基体与热障涂层界面稳定性的影响[J]. 金属学报, 2024, 60(9): 1250-1264.
[2] 周彦余, 李江旭, 刘晨, 赖俊文, 高强, 马会, 孙岩, 陈星秋. 金属间化合物Pt7Sb投影Berry相位与析氢催化关联的第一性原理计算[J]. 金属学报, 2024, 60(6): 837-847.
[3] 刘壮壮, 丁明路, 谢建新. 金属3D打印数字化制造研究进展[J]. 金属学报, 2024, 60(5): 569-584.
[4] 李志尚, 赵龙, 宗洪祥, 丁向东. 机器学习型分子力场在金属材料相变与变形领域的研究进展[J]. 金属学报, 2024, 60(10): 1388-1404.
[5] 陈名毅, 胡俊伟, 余耀辰, 牛海洋. 机器学习分子动力学辅助材料凝固形核研究进展[J]. 金属学报, 2024, 60(10): 1329-1344.
[6] 刘仕, 黄佳玮, 武静. 机器学习势在铁电材料研究中的应用[J]. 金属学报, 2024, 60(10): 1312-1328.
[7] 文通其, 刘怀忆, 龚小国, 叶贝琳, 刘思宇, 李卓远. 深度势能方法在材料科学中的应用[J]. 金属学报, 2024, 60(10): 1299-1311.
[8] 沈雪阳, 褚瑞轩, 蒋宜辉, 张伟. 相变存储器材料设计与多尺度模拟的研究进展[J]. 金属学报, 2024, 60(10): 1362-1378.
[9] 王冠杰, 刘盛咸, 周健, 孙志梅. 材料研究中的可解释机器学习[J]. 金属学报, 2024, 60(10): 1345-1361.
[10] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[11] 冀秀梅, 侯美伶, 王龙, 刘玠, 高克伟. 基于机器学习的中厚板变形抗力模型建模与应用[J]. 金属学报, 2023, 59(3): 435-446.
[12] 杨累, 赵帆, 姜磊, 谢建新. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发[J]. 金属学报, 2023, 59(11): 1499-1512.
[13] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[14] 何兴群, 付华栋, 张洪涛, 方继恒, 谢明, 谢建新. 机器学习辅助高性能银合金电接触材料的快速发现[J]. 金属学报, 2022, 58(6): 816-826.
[15] 王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.