|
|
氢化物超导体临界转变温度的机器学习模型 |
赵晋彬1,2, 王建韬2,3, 何东昌2,3, 李俊林1, 孙岩2, 陈星秋2( ), 刘培涛2( ) |
1 太原科技大学 材料科学与工程学院 太原 030024 2 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 3 中国科学技术大学 材料科学与工程学院 沈阳 110016 |
|
Machine Learning Model for Predicting the Critical Transition Temperature of Hydride Superconductors |
ZHAO Jinbin1,2, WANG Jiantao2,3, HE Dongchang2,3, LI Junlin1, SUN Yan2, CHEN Xing-Qiu2( ), LIU Peitao2( ) |
1 School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China 2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
引用本文:
赵晋彬, 王建韬, 何东昌, 李俊林, 孙岩, 陈星秋, 刘培涛. 氢化物超导体临界转变温度的机器学习模型[J]. 金属学报, 2024, 60(10): 1418-1428.
Jinbin ZHAO,
Jiantao WANG,
Dongchang HE,
Junlin LI,
Yan SUN,
Xing-Qiu CHEN,
Peitao LIU.
Machine Learning Model for Predicting the Critical Transition Temperature of Hydride Superconductors[J]. Acta Metall Sin, 2024, 60(10): 1418-1428.
1 |
De Nobel J, Lindenfeld P. The discovery of superconductivity [J]. Phys. Today, 1996, 49: 40
|
2 |
Boeri L, Hennig R, Hirschfeld P, et al. The 2021 room-temperature superconductivity roadmap [J]. J. Phys. Condens. Matter, 2022, 34: 183002
|
3 |
Kim C J. Superconductor Levitation: Concepts and Experiments [M]. Singapore: Springer, 2019: 1
|
4 |
Mangin P, Kahn R. Superconductivity: An introduction [M]. Cham: Springer, 2017: 1
|
5 |
Meissner W, Ochsenfeld R. Ein neuer effekt bei eintritt der supraleitfähigkeit [J]. Naturwissenschaften, 1933, 21: 787
|
6 |
Hirsch J E, Maple M B, Marsiglio F. Superconducting materials classes: Introduction and overview [J]. Physica, 2015, 514C: 1
|
7 |
Bardeen J, Cooper L N, Schrieffer J R. Microscopic theory of superconductivity [J]. Phys. Rev., 1957, 106: 162
|
8 |
Bednorz J G, Müller K A. Possible high Tc superconductivity in the Ba-La-Cu-O system [J]. Z. Phys., 1986, 64B: 189
|
9 |
Keimer B, Kivelson S A, Norman M R, et al. From quantum matter to high-temperature superconductivity in copper oxides [J]. Nature, 2015, 518: 179
|
10 |
Wu M K, Ashburn J R, Torng C J, et al. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure [J]. Phys. Rev. Lett., 1987, 58: 908
pmid: 10035069
|
11 |
Schilling A, Cantoni M, Guo J D, et al. Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system [J]. Nature, 1993, 363: 56
|
12 |
Kamihara Y, Watanabe T, Hirano M, et al. Iron-based layered superconductor La[O1 - x F x ]FeAs (x = 0.05-0.12) with Tc = 26 K [J]. J. Am. Chem. Soc., 2008, 130: 3296
doi: 10.1021/ja800073m
pmid: 18293989
|
13 |
Paglione J, Greene R L. High-temperature superconductivity in iron-based materials [J]. Nat. Phys., 2010, 6: 645
|
14 |
Wang Q Y, Li Z, Zhang W H, et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3 [J]. Chin. Phys. Lett., 2012, 29: 037402
|
15 |
Li D F, Lee K, Wang B Y, et al. Superconductivity in an infinite-layer nickelate [J]. Nature, 2019, 572: 624
|
16 |
Sun H L, Huo M W, Hu X W, et al. Signatures of superconductivity near 80 K in a nickelate under high pressure [J]. Nature, 2023, 621: 493
|
17 |
Li Q, Zhang Y J, Xiang Z N, et al. Signature of superconductivity in pressurized La4Ni3O10 [J]. Chin. Phys. Lett., 2024, 41: 017401
|
18 |
Zhang M X, Pei C Y, Du X, et al. Superconductivity in trilayer nickelate La4Ni3O10 under pressure [DB/OL]. arXiv: 2311. 07423, 2023
|
19 |
Wang M. Discovery of high-Tc superconductivity in a nickelate [J]. Physics, 2023, 52: 663
|
19 |
王 猛. 液氮温区镍氧化物高温超导体的发现 [J]. 物理, 2023, 52: 663
|
20 |
Pickett W E. Colloquium: Room temperature superconductivity: The roles of theory and materials design [J]. Rev. Mod. Phys., 2023, 95: 021001
|
21 |
Hu J P. Searching for new unconventional high temperature superconductors [J]. Acta Phys. Sin., 2021, 70(1): 017101
|
21 |
胡江平. 探索非常规高温超导体 [J]. 物理学报, 2021, 70(1): 017101
|
22 |
Li J X. Spin fluctuations and uncoventional superconducting pairing [J]. Acta Phys. Sin., 2021, 70(1): 017408
|
22 |
李建新. 自旋涨落与非常规超导配对 [J]. 物理学报, 2021, 70(1): 017408
|
23 |
Nagamatsu J, Nakagawa N, Muranaka T, et al. Superconductivity at 39 K in magnesium diboride [J]. Nature, 2001, 410: 63
|
24 |
Ashcroft N W. Metallic hydrogen: A high-temperature superconductor? [J]. Phys. Rev. Lett., 1968, 21: 1748
|
25 |
Ashcroft N W. Hydrogen dominant metallic alloys: High temperature superconductors? [J]. Phys. Rev. Lett., 2004, 92: 187002
|
26 |
Duan D F, Liu Y X, Tian F B, et al. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity [J]. Sci. Rep., 2014, 4: 6968
|
27 |
Gor'kov L P, Kresin V Z. Pressure and high-Tc superconductivity in sulfur hydrides [J]. Sci. Rep., 2016, 6: 25608
doi: 10.1038/srep25608
pmid: 27167334
|
28 |
Drozdov A P, Eremets M I, Troyan I A, et al. Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride system [J]. Nature, 2015, 525: 73
|
29 |
Liu H Y, Naumov I I, Geballe Z M, et al. Dynamics and superconductivity in compressed lanthanum superhydride [J]. Phys. Rev. B, 2018, 98: 100102
|
30 |
Somayazulu M, Ahart M, Mishra A K, et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures [J]. Phys. Rev. Lett., 2019, 122: 027001
|
31 |
Drozdov A P, Kong P P, Minkov V S, et al. Superconductivity at 250 K in lanthanum hydride under high pressures [J]. Nature, 2019, 569: 528
|
32 |
Eremets M I, Minkov V S, Drozdov A P, et al. High-temperature superconductivity in hydrides: Experimental evidence and details [J]. J. Supercond. Novel Magn., 2022, 35: 965
|
33 |
Zhang S B, Zhang M, Liu H Y. Superconductive hydrogen-rich compounds under high pressure [J]. Appl. Phys., 2021, 127A: 684
|
34 |
Troyan I A, Semenok D V, Kvashnin A G, et al. Anomalous high-temperature superconductivity in YH6 [J]. Adv. Mater., 2021, 33: 2006832
|
35 |
Snider E, Dasenbrock-Gammon N, McBride R, et al. RETRACTED: Synthesis of yttrium superhydride superconductor with a transition temperature up to 262 K by catalytic hydrogenation at high pressures [J]. Phys. Rev. Lett., 2021, 126: 117003
|
36 |
Semenok D V, Kvashnin A G, Ivanova A G, et al. Synthesis of ThH4, ThH6, ThH9 and ThH10: A route to room-temperature superconductivity [DB/OL]. arXiv: 1902. 10206, 2019
|
37 |
Semenok D V, Kvashnin A G, Ivanova A G, et al. Superconductivity at 161 K in thorium hydride ThH10: Synthesis and properties [J]. Mater. Today, 2020, 33: 36
|
38 |
Li B, Miao Z L, Ti L, et al. Predicted high-temperature superconductivity in cerium hydrides at high pressures [J]. J. Appl. Phys., 2019, 126: 235901
|
39 |
Chen W H, Semenok D V, Huang X L, et al. High-temperature superconducting phases in cerium superhydride with a Tc up to 115 K below a pressure of 1 megabar [J]. Phys. Rev. Lett., 2021, 127: 117001
|
40 |
Wang H, Tse J S, Tanaka K, et al. Superconductive sodalite-like clathrate calcium hydride at high pressures [J]. Proc. Natl. Acad. Sci. USA, 2012, 109: 6463
doi: 10.1073/pnas.1118168109
pmid: 22492976
|
41 |
Li Z W, He X, Zhang C L, et al. Superconductivity above 200 K discovered in superhydrides of calcium [J]. Nat. Commun., 2022, 13: 2863
doi: 10.1038/s41467-022-30454-w
pmid: 35606357
|
42 |
Flores-Livas J A, Boeri L, Sanna A, et al. A perspective on conventional high-temperature superconductors at high pressure: Methods and materials [J]. Phys. Rep., 2020, 856: 1
|
43 |
Sun Y, Lv J, Xie Y, et al. Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure [J]. Phys. Rev. Lett., 2019, 123: 097001
|
44 |
Di Cataldo S, Von Der Linden W, Boeri L. Phase diagram and superconductivity of calcium borohyrides at extreme pressures [J]. Phys. Rev., 2020, 102B: 014516
|
45 |
Geng N S, Bi T G, Zurek E. Structural diversity and superconductivity in S-P-H ternary hydrides under pressure [J]. J. Phys. Chem., 2022, 126C: 7208
|
46 |
Grockowiak A D, Ahart M, Helm T, et al. Hot hydride superconductivity above 550 K [J]. Front. Electron. Mater., 2022, 2: 837651
|
47 |
Di Cataldo S, Boeri L. Metal borohydrides as ambient-pressure high-Tc superconductors [J]. Phys. Rev., 2023, 107B: L060501
|
48 |
Song P, Hou Z F, Baptista De Castro P, et al. High-pressure Mg-Sc-H phase diagram and its superconductivity from first-principles calculations [J]. J. Phys. Chem., 2022, 126C: 2747
|
49 |
Shutov G M, Semenok D V, Kruglov I A, et al. Ternary superconducting hydrides in the La-Mg-H system [J]. Mater. Today Phys., 2024, 40: 101300
|
50 |
Chen W H, Huang X L, Semenok D V, et al. Enhancement of superconducting properties in the La-Ce-H system at moderate pressures [J]. Nat. Commun., 2023, 14: 2660
doi: 10.1038/s41467-023-38254-6
pmid: 37160883
|
51 |
Zhao W D, Huang X L, Zhang Z H, et al. Superconducting ternary hydrides: Progress and challenges [J]. Natl. Sci. Rev., 2024, 11: nwad307
|
52 |
Gao M, Yan X W, Lu Z Y, et al. Phonon-mediated high-temperature superconductivity in the ternary borohydride KB2H8 under pressure near 12 GPa [J]. Phys. Rev., 2021, 104B: L100504
|
53 |
Zhang Z H, Cui T, Hutcheon M J, et al. Design principles for high-temperature superconductors with a hydrogen-based alloy backbone at moderate pressure [J]. Phys. Rev. Lett., 2022, 128: 047001
|
54 |
Song Y G, Bi J K, Nakamoto Y, et al. Stoichiometric ternary superhydride LaBeH8 as a new template for high-temperature superconductivity at 110 K under 80 GPa [J]. Phys. Rev. Lett., 2023, 130: 266001
|
55 |
Zhao W D, Duan D F, Du M Y, et al. Pressure-induced high-Tc superconductivity in the ternary clathrate system Y-Ca-H [J]. Phys. Rev., 2022, 106B: 014521
|
56 |
Du M Y, Song H, Zhang Z H, et al. Room-temperature superconductivity in Yb/Lu substituted clathrate hexahydrides under moderate pressure [J]. Research, 2022, 2022: 9784309
|
57 |
Sanna A, Cerqueira T F T, Fang Y W, et al. Prediction of ambient pressure conventional superconductivity above 80 K in hydride compounds [J]. npj Comput. Mater., 2024, 10: 44
|
58 |
Dolui K, Conway L J, Heil C, et al. Feasible route to high-temperature ambient-pressure hydride superconductivity [J]. Phys. Rev. Lett., 2024, 132: 166001
|
59 |
Belli F, Novoa T, Contreras-García J, et al. Strong correlation between electronic bonding network and critical temperature in hydrogen-based superconductors [J]. Nat. Commun., 2021, 12: 5381
doi: 10.1038/s41467-021-25687-0
pmid: 34531389
|
60 |
Liu L L, Peng F, Song P, et al. Generic rules for achieving room-temperature superconductivity in ternary hydrides with clathrate structures [J]. Phys. Rev., 2023, 107B: L020504
|
61 |
Marsiglio F. Eliashberg theory: A short review [J]. Ann. Phys., 2020, 417: 168102
|
62 |
Éliashberg G M. Interactions between electrons and lattice vibrations in a superconductor [J]. Sov. Phys. JETP, 1960, 11: 696
|
63 |
Dynes R C. McMillan's equation and the Tc of superconductors [J]. Solid State Commun., 1972, 10: 615
|
64 |
Allen P B, Dynes R C. Transition temperature of strong-coupled superconductors reanalyzed [J]. Phys. Rev., 1975, 12B: 905
|
65 |
McMillan W L. Transition temperature of strong-coupled superconductors [J]. Phys. Rev., 1968, 167: 331
|
66 |
Oliveira L N, Gross E K U, Kohn W. Density-functional theory for superconductors [J]. Phys. Rev. Lett., 1988, 60: 2430
pmid: 10038349
|
67 |
Marques M A L, Lüders M, Lathiotakis N N, et al. Ab initio theory of superconductivity. II. Application to elemental metals [J]. Phys. Rev., 2005, 72B: 024546
|
68 |
Lüders M, Marques M A L, Lathiotakis N N, et al. Ab initio theory of superconductivity. I. Density functional formalism and approximate functionals [J]. Phys. Rev., 2005, 72B: 024545
|
69 |
Choudhary K, Garrity K. Designing high-TC superconductors with BCS-inspired screening, density functional theory, and deep-learning [J]. npj Comput. Mater., 2022, 8: 244
|
70 |
Shipley A M, Hutcheon M J, Needs R J, et al. High-throughput discovery of high-temperature conventional superconductors [J]. Phys. Rev., 2021, 104B: 054501
|
71 |
Saha S, Di Cataldo S, Giannessi F, et al. Mapping superconductivity in high-pressure hydrides: The Superhydra project [J]. Phys. Rev. Mater., 2023, 7: 054806
|
72 |
Sommer T, Willa R, Schmalian J, et al. 3DSC—A dataset of superconductors including crystal structures [J]. Sci. Data, 2023, 10: 816
doi: 10.1038/s41597-023-02721-y
pmid: 37990027
|
73 |
Cerqueira T F T, Sanna A, Marques M A L. Sampling the materials space for conventional superconducting compounds [J]. Adv. Mater., 2024, 36: 2307085
|
74 |
Stanev V, Oses C, Kusne A G, et al. Machine learning modeling of superconducting critical temperature [J]. npj Comput. Mater., 2018, 4: 29
|
75 |
Breiman L. Random forests [J]. Mach. Learn., 2001, 45: 5
|
76 |
MDR. MDR SuperCon Datasheet Ver.220808 [EB/OL]. (2022-16-12)[Date·Cite].
|
77 |
Hutcheon M J, Shipley A M, Needs R J. Predicting novel superconducting hydrides using machine learning approaches [J]. Phys. Rev., 2020, 101B: 144505
|
78 |
Liu Y, Huang H Y, Yuan J, et al. Upper limit of the transition temperature of superconducting materials [J]. Patterns, 2023, 4: 100841
|
79 |
Wines D, Choudhary K. Data-driven design of high pressure hydride superconductors using DFT and deep learning [J]. Mater. Futures, 2024, 3: 025602
|
80 |
Ward L, Dunn A, Faghaninia A, et al. Matminer: An open source toolkit for materials data mining [J]. Comput. Mater. Sci., 2018, 152: 60
|
81 |
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev., 1996, 54B: 11169
|
82 |
Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals [J]. Phys. Rev., 1993, 47B: 558
|
83 |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865
pmid: 10062328
|
84 |
Wang V, Xu N, Liu J C, et al. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code [J]. Comput. Phys. Commun., 2021, 267: 108033
|
85 |
Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine learning in python [J]. J. Mach. Learn. Res., 2011, 12: 2825
|
86 |
Pettifor D G. A chemical scale for crystal-structure maps [J]. Solid State Commun., 1984, 51: 31
|
87 |
Pettifor D G. The structures of binary compounds. I. Phenomenological structure maps [J]. J. Phys., 1986, 19C: 285
|
88 |
Villars P, Cenzual K, Daams J, et al. Data-driven atomic environment prediction for binaries using the Mendeleev number: Part 1. Composition AB [J]. J. Alloys Compd., 2004, 367: 167
|
89 |
Liu H Y, Naumov I I, Hoffmann R, et al. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure [J]. Proc. Natl. Acad. Sci. USA, 2017, 114: 6990
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|