Please wait a minute...
金属学报  2013, Vol. 49 Issue (6): 699-706    DOI: 10.3724/SP.J.1037.2012.00692
  论文 本期目录 | 过刊浏览 |
电沉积制备PtRu/MWCNTs和PtRuNi/MWCNTs及其在直接甲醇燃料电池中的性能
赵越1),洪波1),范楼珍2)
1)中国海洋大学环境科学与工程学院, 青岛 266100
2)北京师范大学化学学院, 北京 100875
ELECTRODEPOSITION OF PtRu/MWCNTs AND PtRuNi/MWCNTs AND THEIR PERFORMANCE IN DIRECT METHANOL FUEL CELLS
ZHAO Yue1), HONG Bo1),FAN Louzhen2)
1)College of Environmental Science and Engineering, Ocean University of China, Tsingtao 266100
2)College of Chemistry, Beijing Normal University, Beijing 100875
引用本文:

赵越,洪波,范楼珍. 电沉积制备PtRu/MWCNTs和PtRuNi/MWCNTs及其在直接甲醇燃料电池中的性能[J]. 金属学报, 2013, 49(6): 699-706.
ZHAO Yue, HONG Bo, FAN Louzhen. ELECTRODEPOSITION OF PtRu/MWCNTs AND PtRuNi/MWCNTs AND THEIR PERFORMANCE IN DIRECT METHANOL FUEL CELLS[J]. Acta Metall Sin, 2013, 49(6): 699-706.

全文: PDF(1916 KB)  
摘要: 

采用改进的电化学三步法制备铂钌/多壁碳纳米管(PtRu/MWCNTs)和铂钌镍/多壁碳纳米管(PtRuNi/MWCNTs)金属纳米复合材料,用透射电子显微镜、能量色散光谱、X射线多晶衍射和X光电子能谱对其形貌、成分和结构进行表征和分析.采用循环伏安法和计时电流法研究PtRu/MWCNTs和PtRuNi/MWCNTs金属纳米复合材料对O还原(ORR)和甲醇氧化的电催化活性和稳定性.结果表明, PtRuNi/MWCNTs的ORR起始电位发生明显正移, 峰电流增高, 甲醇氧化峰电流高, 氧化峰电位负移,具有高抗CO中毒性能且稳定性好, 是良好的直接甲醇氧化燃料电池阳极催化剂候选材料.同时, PtRuNi/MWCNTs的高ORR和甲醇氧化电催化活性, 是双功能工作理论、特殊三维结构和MWCNTs表面经电化学活化处理生成含O官能团多种因素的共同作用结果.

关键词 纳米复合材料多壁碳纳米管三维结构燃料电池电催化    
Abstract

PtRu catalyst has long application history in electrochemical field due to the wide prospect in direct methanol fuel cells (DMFCs), but its performance remains to be improved further. There are usually two ways to enhance the catalytic activity of PtRu bimetallic catalyst. One is to add the third metal into alloy; the other is to improve the properties of carbon support. In this work, PtRu and PtRuNi nanoparticle clusters were electrochemically deposited on multi-walled carbon nanotubes (MWCNTs) through a three-step process, including an electrochemical treatment of MWCNTs, electro-oxidation of metal chloride to high valence of metal complex and an electro-conversion of PtRu and PtRuNi nanoparticle clusters on MWCNTs. The structure and elemental composition of the PtRu/MWCNTs and PtRuNi/MWCNTs electrodes were characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray polycrystalline diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The electrocatalytic properties of the PtRu/MWCNTs and PtRuNi/MWCNTs electrodes for oxygen reduction reaction (ORR) and methanol oxidation were investigated by cycle voltammetry (CV) method and current-time (CT) method. The results showed that PtRuNi/MWCNTs electrode exhibited a high I_f/Ib (the forward anodic peak/the reverse anodic peak current) value and an appreciably improved resistance to carbon  monoxide (CO) poisoning in methanol solution, so a beneficial effect on the oxygen adsorption in dilute sulphuric acid solution was observed. The high electrocatalytic activity and good stability of PtRuNi/MWCNTs was attributed to the synergetic effect of bifunctional catalysis, three dimension structure and oxygen functional groups which generated after electrochemical activation treatment on MWCNTs surface. The successful preparation of PtRu/MWCNTs and PtRuNi/MWCNTs nanocomposites opens a new path for efficient dispersion of promising electrocatalysts in DMFCs.

Key wordsnanoparticle composite    multi-wall carbon nanotube    three dimension structure    fuel cell    electrocatalysis
收稿日期: 2012-11-19     
基金资助:

国家自然科学基金项目41201569和中央高校基本科研业务费实验室研究基金项目201251007资助

作者简介: 赵越, 女, 1981年生, 硕士

[1] Zhao X, Li W, Fu Y, Manthiram A. Int J Hydrogen Energy, 2012; 37: 9845

[2] Bennett B, Koraishy M B, Meyers P J.J Power Sources,2012; 218: 268
[3] Zheng W, Suominen A, Tuominen A.Energy Procedia, 2012; 28: 78
[4] Umeda M, Ueda M, Shironita S.Energy Procedia, 2012; 28: 102
[5] Wang X D, Xie X F, Wang M, Liu G C, Miao R Y, Wang Y T, Yan Q. Prog Chem, 2011; 23: 509
 (王新东, 谢晓峰, 王萌, 刘桂成, 苗睿瑛, 王一拓, 阎群. 化学进展, 2011; 23: 509)
[6] Kakati N, Lee S H, Maiti J, Yoon Y S.  Surf Sci, 2012; 606: 1633
[7] Escudero-Cid R, Hernandez-Fernandez P, Perez-Flores J C, Rojas
S, Garcia-Rodriguez S, Fatas E, Ocon P.  Int J Hydrogen Energy, 2012; 37: 7119
[8] Kang S, Lim S, Peck D H, Kim S K, Jung D H, Hong S H, Jung H G, Shul Y.
 Int J Hydrogen Energy, 2012; 37: 4685
[9] Murthi V S, Urian R C, Mukerjee S.  J Phys Chem, 2004; 108 B: 11011
[10] Wei Z D, Li L L, Luo Y H, Yan C, Sun C X, Yin G Z, Shen P K.  J Phys Chem, 2006; 110B:26055
[11] Basnayake R, Li Z, Katar S, Zhou W, Rivera H, Smotkin E S, Casadonte D J,
Korzeniewski C.  Langmuir, 2006; 22: 10446
[12] Ahn S H, Choi I, Kwon O J, Kim J J. Chem Eng J, 2012; 181-182: 276
[13] Li B, Higgins D C, Zhu S, Li H, Wang H, Ma J, Chen Z.  Catal Commun, 2012; 18: 51
[14] Yang D S, Sim K S, Kwen H D, Choi S H.  J Ind Eng Chem, 2012; 18: 538
[15] Li Q W, Wei Z D, Chen S G, Qi X Q, Liu X, Ding W, Ma Y. Acta Phys Chim Sin, 2011; 27: 2857
 (李庆武, 魏子栋, 陈四国, 齐学强, 柳晓, 丁炜, 马宇. 物理化学学报, 2011; 27: 2857)
[16] Xiong L, Manthiram A.  J Electrochem Soc, 2005; 152: 697
[17] Guillen-Villafuerte O, Guil-Lopez R, Nieto E, Garcia G,Rodriguez J L, Pastor E, Fierro J L G.  Int J Hydrogen Energy,2012; 37: 7171
[18] Dong S A, Liu F, Hou S Q, Pan Z F.  Acta Chim Sin, 2010; 68: 1519
 (董守安, 刘锋, 侯树谦, 潘再富. 化学学报, 2010; 68: 1519)
[19] Dillon A C, Jones K M, Bekkedahl T A, Kiang C H, Bethune D S, Heben M J.
 Nature, 1997; 386: 377
[20] Collins P G, Zettl A, Bando H, Thess A, Smalley R E.  Science, 1997; 278: 100
[21] Zhao Y, Fan L Z, Zhong H Z, Li Y F, Yang S H.  Adv Funct Mater, 2007; 17: 1537
[22] Zhang Y Y, Liu M L, Wang M L, Xie Q J, Yao S Z.  Sensor Actuat, 2007; 123B: 444
[23] Fachinotti E, Guerrini E, Tavares A C, Trasatti S.  J Electroanal Chem, 2007; 600: 103
[24] Hu C C, Cheng C Y.  J Power Sources, 2002; 111: 137
[25] Vukovic M, Cukman D. J  Electroanal Chem, 1999; 474: 167
[26] Park K W, Choi J H, Kwon B K, Lee S A, Sung Y E.  J Phys Chem, 2002; 106B: 1869
[27] Demirci U B.  J Power Sources, 2007; 173: 11
[28] Wang W, Wang R, Wang H, Ji S, Key J, Li X.  J Power Sources, 2011; 196: 9346
[29] Liu F, Lee J Y, Zhou W.  J Phys Chem, 2004; 108B: 17959
[30] Zhao Y, E Y F, Fan L Z, Qiu Y F, Yang S H.  Electrochim Acta, 2007; 52: 5873
[31]Kardash D, Korzeniewski C, Markovic N.  J Electroanal Chem, 2001; 500: 518
[1] 徐文策, 崔振铎, 朱胜利. 开孔多孔金属材料在电催化及生物医用领域的研究进展[J]. 金属学报, 2022, 58(12): 1527-1544.
[2] 徐秀月, 李艳辉, 张伟. Fe(Pt, Ru)B非晶带材脱合金制备纳米多孔PtRuFe及其甲醇电催化性能[J]. 金属学报, 2020, 56(10): 1393-1400.
[3] 崔立山, 姜大强. 基于应变匹配的高性能金属纳米复合材料研究进展[J]. 金属学报, 2019, 55(1): 45-58.
[4] 杨诚智, 关玉, 陈世坤, 苏慧兰, 张荻. 蝶翅精细分级结构金属纳米复合材料的研究进展[J]. 金属学报, 2019, 55(1): 101-108.
[5] 张文颖, 李俊, 周波. 金属连接体涂层材料MnCo2O4尖晶石的氧化动力学行为和电性能*[J]. 金属学报, 2016, 52(3): 355-360.
[6] 王松林,凤仪,王东生,王泾文. 三层共烧制备LaCrO3基连接体/复合阳极/YSZ电解质的研究[J]. 金属学报, 2012, 48(5): 587-592.
[7] 吴博 李红凯 林国强 付宇 候明 衣宝廉. 不锈钢双极板电弧离子镀Cr1-xNx薄膜改性研究[J]. 金属学报, 2009, 45(9): 1125-1129.
[8] 华斌 张建福 卢凤双 孔永红 蒲健 李箭. LaCoO3涂层对SUS 430合金连接体中温氧化行为的影响[J]. 金属学报, 2009, 45(5): 605-609.
[9] 华杰 刘梅 冯明 徐仕翀 尹基哲 李海波. Co1-xNixFe2O4/SiO2纳米复合材料的磁性[J]. 金属学报, 2009, 45(4): 460-463.
[10] 刘春阳; 焦永昌; 张麟兮; 薛敏彪; 张福顺 . 聚苯胺/聚苯乙烯复合材料的电磁波吸收特性[J]. 金属学报, 2007, 43(4): 409-412 .
[11] 刘丽妹; 史艳晶; 聂莉莹; 李爱君; 胡金江; 陈伟 . 纳米复合永磁材料的交换耦合作用和有效各向异性[J]. 金属学报, 2005, 41(3): 317-320 .
[12] 张以河; 付绍云; 黄传军; 李来风; 李广涛; 严庆 . 热固性聚合物基纳米复合材料的研究进展[J]. 金属学报, 2004, 40(8): 0-840 .
[13] 丛洪涛; 杨志卿; 贺连龙 . Al2O3/Al纳米复合材料的强化机制[J]. 金属学报, 2003, 39(3): 320-324 .
[14] 方前锋; 易志国; 张国光 . La2M0209系新型氧离子导体中氧空位扩散的内耗与介电弛豫研究[J]. 金属学报, 2003, 39(11): 1133-1138 .
[15] 方前锋; 易志国; 张国光 . La2M0209系新型氧离子导体中氧空位扩散的内耗与介电弛豫研究[J]. 金属学报, 2003, 39(11): 1133-.