|
|
医用可降解锌合金的生物相容性评价研究进展 |
王鲁宁1,2( ), 尹玉霞1, 石章智1, 韩倩倩3 |
1 北京科技大学 材料科学与工程学院 北京 100083 2 北京材料基因工程高精尖创新中心 北京 100083 3 中国食品药品检定研究院 北京 102629 |
|
Research Progress on Biocompatibility Evaluation of Biomedical Degradable Zinc Alloys |
WANG Luning1,2( ), YIN Yuxia1, SHI Zhangzhi1, HAN Qianqian3 |
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 2 Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing 100083, China 3 National Institutes for Food and Drug Control, Beijing 102629, China |
引用本文:
王鲁宁, 尹玉霞, 石章智, 韩倩倩. 医用可降解锌合金的生物相容性评价研究进展[J]. 金属学报, 2023, 59(3): 319-334.
Luning WANG,
Yuxia YIN,
Zhangzhi SHI,
Qianqian HAN.
Research Progress on Biocompatibility Evaluation of Biomedical Degradable Zinc Alloys[J]. Acta Metall Sin, 2023, 59(3): 319-334.
1 |
Scholten K, Meng E. Materials for microfabricated implantable devices: A review [J]. Lab Chip, 2015, 15: 4256
doi: 10.1039/c5lc00809c
pmid: 26400550
|
2 |
Xiao M, Chen Y M, Biao M N, et al. Bio-functionalization of biomedical metals [J]. Mater. Sci. Eng., 2017, C70: 1057
|
3 |
Pogorielov M, Husak E, Solodivnik A, et al. Magnesium-based biodegradable alloys: Degradation, application, and alloying elements [J]. Interv. Med. Appl. Sci., 2017, 9: 27
|
4 |
Sharma M P. Corrosion of bio-materials [J]. J. Metall. Mater. Eng. Res., 2020, 10: 21
|
5 |
Masiero G, Rodinò G, Matsuda J, et al. Bioresorbable coronary scaffold technologies: What's new? [J]. Cardiol. Clin., 2020, 38: 589
doi: 10.1016/j.ccl.2020.07.004
pmid: 33036720
|
6 |
Jinnouchi H, Torii S, Sakamoto A, et al. Fully bioresorbable vascular scaffolds: Lessons learned and future directions [J]. Nat. Rev. Cardiol., 2019, 16: 286
doi: 10.1038/s41569-018-0124-7
pmid: 30546115
|
7 |
Onuma Y, Muramatsu T, Kharlamov A, et al. Freeing the vessel from metallic cage: What can we achieve with bioresorbable vascular scaffolds? [J]. Cardiovasc. Interv. Ther., 2012, 27: 141
pmid: 22569783
|
8 |
de Pommereau A, de Hemptinne Q, Varenne O, et al. Bioresorbable vascular scaffolds: Time to absorb past lessons or fade away? Arch. Cardiovasc. Dis., 2018, 111: 229
doi: S1875-2136(18)30050-0
pmid: 29678390
|
9 |
Liu J Y, Wang J G, Yu Y H, et al. Advances in biodegradable vascular stent materials [J]. Mater. Sci. Forum, 2020, 987: 93
doi: 10.4028/www.scientific.net/MSF.987.93
|
10 |
Zhu D H, Cockerill I, Su Y C, et al. Mechanical strength, biodegradation, and in vitro and in vivo biocompatibility of Zn biomaterials [J]. ACS Appl. Mater. Interfaces, 2019, 11: 6809
doi: 10.1021/acsami.8b20634
|
11 |
Gąsior G, Szczepański J, Radtke A. Biodegradable iron-based materials-what was done and what more can Be done? [J]. Materials, 2021, 14: 3381
doi: 10.3390/ma14123381
|
12 |
Zhou Y Z, Wu P, Yang Y W, et al. The microstructure, mechanical properties and degradation behavior of laser-melted Mg-Sn alloys [J]. J. Alloys Compd., 2016, 687: 109
doi: 10.1016/j.jallcom.2016.06.068
|
13 |
Wen P, Voshage M, Jauer L, et al. Laser additive manufacturing of Zn metal parts for biodegradable applications: Processing, formation quality and mechanical properties [J]. Mater. Des., 2018, 155: 36
doi: 10.1016/j.matdes.2018.05.057
|
14 |
Song B, Dong S J, Liu Q, et al. Vacuum heat treatment of iron parts produced by selective laser melting: Microstructure, residual stress and tensile behavior [J]. Mater. Des., 2014, 54: 727
doi: 10.1016/j.matdes.2013.08.085
|
15 |
Jo S, Whitmore L, Woo S, et al. Excellent age hardenability with the controllable microstructure of AXW100 magnesium sheet alloy [J]. Sci. Rep., 2020, 10: 22413
doi: 10.1038/s41598-020-79390-z
pmid: 33376246
|
16 |
Wang C R, Xi T F, Feng X M. The important rule of material and chemical characterization in device evaluation [J]. Chin. Med. Dev. Inf., 2007, 13(5): 4
|
16 |
王春仁, 奚廷斐, 冯晓明. 医疗器械生物材料表征和化学性能检测的重要性 [J]. 中国医疗器械信息, 2007, 13(5): 4
|
17 |
Li H F, Wang P Y, Lin G C, et al. The role of rare earth elements in biodegradable metals: A review [J]. Acta Biomater., 2021, 129: 33
doi: 10.1016/j.actbio.2021.05.014
|
18 |
Liu Y, Zheng Y F, Chen X H, et al. Fundamental theory of biodegradable metals—Definition, criteria, and design [J]. Adv. Funct. Mater., 2019, 29: 1805402
doi: 10.1002/adfm.201805402
|
19 |
Wang C, Yu Z T, Cui Y J, et al. Processing of a novel Zn alloy micro-tube for biodegradable vascular stent application [J]. J. Mater. Sci. Technol., 2016, 32: 925
doi: 10.1016/j.jmst.2016.08.008
|
20 |
Zheng Y F, Xia D D, Chen Y N, et al. Additively manufactured biodegrabable metal implants [J]. Acta Metall. Sin., 2021, 57: 1499
doi: 10.11900/0412.1961.2021.00294
|
20 |
郑玉峰, 夏丹丹, 谌雨农 等. 增材制造可降解金属医用植入物 [J]. 金属学报, 2021, 57: 1499
doi: 10.11900/0412.1961.2021.00294
|
21 |
Hernández-Escobar D, Champagne S, Yilmazer H, et al. Current status and perspectives of zinc-based absorbable alloys for biomedical applications [J]. Acta Biomater., 2019, 97: 1
doi: S1742-7061(19)30523-9
pmid: 31351253
|
22 |
Törne K, Larsson M, Norlin A, et al. Degradation of zinc in saline solutions, plasma, and whole blood [J]. J. Biomed. Mater. Res., 2016, 104B: 1141
|
23 |
Su Y C, Cockerill I, Wang Y D, et al. Zinc-based biomaterials for regeneration and therapy [J]. Trends Biotechnol., 2019, 37: 428
doi: S0167-7799(18)30305-6
pmid: 30470548
|
24 |
Hojyo S, Fukada T. Roles of zinc signaling in the immune system [J]. J. Immunol. Res., 2016, 2016: 6762343
|
25 |
Berg J M, Shi Y G. The galvanization of biology: A growing appreciation for the roles of zinc [J]. Science, 1996, 271: 1081
doi: 10.1126/science.271.5252.1081
pmid: 8599083
|
26 |
Yamaguchi M. Role of nutritional zinc in the prevention of osteoporosis [J]. Mol. Cell. Biochem., 2010, 338: 241
doi: 10.1007/s11010-009-0358-0
pmid: 20035439
|
27 |
Imbeault M, Helleboid P Y, Trono D. KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks [J]. Nature, 2017, 543: 550
doi: 10.1038/nature21683
|
28 |
Hennig B, Toborek M, McClain C J, et al. Nutritional implications in vascular endothelial cell metabolism [J]. J. Am. Coll. Nutr., 1996, 15: 345
pmid: 8829090
|
29 |
Yamaguchi M. Nutritional factors and bone homeostasis: Synergistic effect with zinc and genistein in osteogenesis [J]. Mol. Cell. Biochem., 2012, 366: 201
doi: 10.1007/s11010-012-1298-7
pmid: 22476903
|
30 |
Miller L V, Krebs N F, Hambidge K M. A mathematical model of zinc absorption in humans as a function of dietary zinc and phytate [J]. J. Nutr., 2007, 137: 135
pmid: 17182814
|
31 |
Bitanihirwe B K Y, Cunningham M G. Zinc: the brain's dark horse [J]. Synapse, 2010, 63: 1029
doi: 10.1002/syn.20683
|
32 |
Kabir H, Munir K, Wen C E, et al. Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives [J]. Bioact. Mater., 2021, 6: 836
doi: 10.1016/j.bioactmat.2020.09.013
pmid: 33024903
|
33 |
Yang N, Venezuela J, Almathami S, et al. Zinc-nutrient element based alloys for absorbable wound closure devices fabrication: Current status, challenges, and future prospects [J]. Biomaterials, 2022, 280: 121301
doi: 10.1016/j.biomaterials.2021.121301
|
34 |
Su Y C, Fu J Y, Lee W, et al. Improved mechanical, degradation, and biological performances of Zn-Fe alloys as bioresorbable implants [J]. Bioact. Mater., 2022, 17: 334
doi: 10.1016/j.bioactmat.2021.12.030
pmid: 35386444
|
35 |
Xia D D, Qin Y, Guo H, et al. Additively manufactured pure zinc porous scaffolds for critical-sized bone defects of rabbit femur [J]. Bioact. Mater., 2023, 19: 12
doi: 10.1016/j.bioactmat.2022.03.010
pmid: 35415313
|
36 |
ISO. Biological evaluation of medical devices, Part 1: Evaluation and testing within a risk management process [S]. 2018
|
37 |
Anderson J M. Biological responses to materials [J]. Annu. Rev. Mater. Res., 2001, 31: 81
doi: 10.1146/annurev.matsci.31.1.81
|
38 |
Williams D F. On the mechanisms of biocompatibility [J]. Biomaterials, 2008, 29: 2941
doi: 10.1016/j.biomaterials.2008.04.023
pmid: 18440630
|
39 |
Zhao P, Xing L N, Liu W B, et al. Biocompatibility evaluation of medical devices: Status, progress and trend [J]. China Med. Dev. Inf., 2021, 27(11): 1
|
39 |
赵 鹏, 邢丽娜, 刘文博 等. 医疗器械生物相容性评价: 现状、进展与趋势 [J]. 中国医疗器械信息, 2021, 27(11): 1
|
40 |
Williams D F. On the nature of biomaterials [J]. Biomaterials, 2009, 30: 5897
doi: 10.1016/j.biomaterials.2009.07.027
pmid: 19651435
|
41 |
Geurtsen W. Biocompatibility of dental casting alloys [J]. Crit. Rev. Oral. Biol. Med., 2002, 13: 71
pmid: 12097239
|
42 |
Salimi A, Jamali Z, Atashbar S, et al. Pathogenic mechanisms and therapeutic implication in nickel-induced cell damage [J]. Endocr. Metab. Immune., 2020, 20: 968
|
43 |
Hillen U, Haude M, Erbel R, et al. Evaluation of metal allergies in patients with coronary stents [J]. Contact Dermatitis, 2002, 47: 353
pmid: 12581282
|
44 |
Holton A D, Walsh E G, Brott B C, et al. Evaluation of in-stent stenosis by magnetic resonance phase-velocity mapping in nickel-titanium stents [J]. J. Magn. Reson. Imaging, 2005, 22: 248
pmid: 16028256
|
45 |
Liu P S, Yu B, Hu A M, et al. Development in applications of porous metals [J]. Trans. Nonferrous Met. Soc. China, 2001, 11: 629
|
46 |
Qin J H, Chen Q, Yang C Y, et al. Research process on property and application of metal porous materials [J]. J. Alloys Compd., 2016, 654: 39
doi: 10.1016/j.jallcom.2015.09.148
|
47 |
Purdue P E, Koulouvaris P, Potter H G, et al. The cellular and molecular biology of periprosthetic osteolysis [J]. Clin. Orthop. Relat. Res., 2007, 454: 251
doi: 10.1097/01.blo.0000238813.95035.1b
|
48 |
Goodman S. Wear particulate and osteolysis [J]. Orthop. Clin. North Am., 2005, 36: 41
doi: 10.1016/j.ocl.2004.06.015
|
49 |
Yang K, Shi J R, Wang L, et al. Bacterial anti-adhesion surface design: Surface patterning, roughness and wettability: A review [J]. J. Mater. Sci. Technol., 2022, 99: 82
doi: 10.1016/j.jmst.2021.05.028
|
50 |
Yao X, Peng R, Ding J D. Cell-material interactions revealed via material techniques of surface patterning [J]. Adv. Mater., 2013, 25: 5257
doi: 10.1002/adma.201301762
|
51 |
Brott T, Stump D. Overview of hemostasis and thrombosis [J]. Semin. Neurol., 1991, 11: 305
pmid: 1811287
|
52 |
Wehrmacher W H. Molecular markers of hemostasis: Introduction and overview [J]. Semin. Thromb. Hemost., 1984, 10: 215
pmid: 6515417
|
53 |
Wu S, Applewhite A J, Niezgoda J, et al. Oxidized regenerated cellulose/collagen dressings: Review of evidence and recommendations [J]. Adv. Skin Wound Care, 2017, 30: S1
doi: 10.1097/01.ASW.0000525951.20270.6c
|
54 |
Zhang L, Wang S M, Tan M H, et al. Efficacy of oxidized regenerated cellulose/collagen dressing for management of skin wounds: A systematic review and meta-analysis [J]. Evid.-Based Complement. Alternat. Med., 2021, 2021: 1058671
|
55 |
Liu C H, Wu S F, Hou L, et al. Study on cytotoxicity tests of medical devices based on IC50 [J]. Chin. J. Med. Lnstrument., 2014, 38: 433
|
55 |
刘成虎, 吴世福, 侯 丽 等. 基于IC50的医疗器械细胞毒性试验方法的研究 [J]. 中国医疗器械杂志, 2014, 38: 433
|
56 |
Lin W J, Zhang G, Cao P, et al. Cytotoxicity and its test methodology for a bioabsorbable nitrided iron stent [J]. J. Biomed. Mater. Res., 2015, 103B: 764
|
57 |
Dargusch M S, Balasubramani N, Venezuela J, et al. Improved biodegradable magnesium alloys through advanced solidification processing [J]. Scr. Mater., 2020, 177: 234
doi: 10.1016/j.scriptamat.2019.10.028
|
58 |
Niederlaender J, Walter M, Krajewski S, et al. Cytocompatibility evaluation of different biodegradable magnesium alloys with human mesenchymal stem cells [J]. J. Mater. Sci.: Mater. Med., 2014, 25: 835
doi: 10.1007/s10856-013-5119-7
|
59 |
Ma J, Zhao N, Zhu D H. Endothelial cellular responses to biodegradable metal zinc [J]. ACS Biomater. Sci. Eng., 2015, 1: 1174
pmid: 27689136
|
60 |
Shearier E R, Bowen P K, He W L, et al. In vitro cytotoxicity, adhesion, and proliferation of human vascular cells exposed to zinc [J]. ACS Biomater. Sci. Eng., 2016, 2: 634
pmid: 27840847
|
61 |
Kubásek J, Vojtěch D, Jablonská E, et al. Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys [J]. Mater. Sci. Eng., 2016, C58: 24
|
62 |
Jablonská E, Vojtěch D, Fousová M, et al. Influence of surface pre-treatment on the cytocompatibility of a novel biodegradable ZnMg alloy [J]. Mater. Sci. Eng., 2016, C68: 198
|
63 |
Venezuela J, Dargusch M S. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review [J]. Acta Biomater., 2019, 87: 1
doi: S1742-7061(19)30055-8
pmid: 30660777
|
64 |
Shi Z Z, Yu J, Liu X F, et al. Effects of Ag, Cu or Ca addition on microstructure and comprehensive properties of biodegradable Zn-0.8Mn alloy [J]. Mater. Sci. Eng., 2019, C99: 969
|
65 |
Li P, Schille C, Schweizer E, et al. Selection of extraction medium influences cytotoxicity of zinc and its alloys [J]. Acta Biomater., 2019, 98: 235
doi: S1742-7061(19)30179-5
pmid: 30862550
|
66 |
Reference individuals for use in radiation protection-Part 5: Human body elemental composition and contents of element in main tissues and organs [S]. 2014
|
67 |
Mostaed E, Sikora-Jasinska M, Drelich J W, et al. Zinc-based alloys for degradable vascular stent applications [J]. Acta Biomater., 2018, 71: 1
doi: S1742-7061(18)30125-9
pmid: 29530821
|
68 |
Wang J L, Witte F, Xi T F, et al. Recommendation for modifying current cytotoxicity testing standards for biodegradable magnesium-based materials [J]. Acta Biomater., 2015, 21: 237
doi: 10.1016/j.actbio.2015.04.011
pmid: 25890098
|
69 |
Boon G D. An overview of hemostasis [J]. Toxicol. Pathol., 1993, 21: 170
pmid: 8210939
|
70 |
De Gaetano G. Historical overview of the role of platelets in hemostasis and thrombosis [J]. Haematologica, 2001, 86: 349
pmid: 11325638
|
71 |
Yin Y X, Zhou C, Shi Y P, et al. Hemocompatibility of biodegradable Zn-0.8 wt% (Cu, Mn, Li) alloys [J]. Mater. Sci. Eng., 2019, C104: 109896
|
72 |
Liu X W, Sun J K, Zhou F Y, et al. Micro-alloying with Mn in Zn-Mg alloy for future biodegradable metals application [J]. Mater. Des., 2016, 94: 95
doi: 10.1016/j.matdes.2015.12.128
|
73 |
Shen C, Liu X W, Fan B, et al. Mechanical properties, in vitro degradation behavior, hemocompatibility and cytotoxicity evaluation of Zn-1.2Mg alloy for biodegradable implants [J]. RSC Adv., 2016, 6: 86410
doi: 10.1039/C6RA14300H
|
74 |
Liu X W, Sun J K, Yang Y H, et al. Microstructure, mechanical properties, in vitro degradation behavior and hemocompatibility of novel Zn-Mg-Sr alloys as biodegradable metals [J]. Mater. Lett., 2016, 162: 242
doi: 10.1016/j.matlet.2015.07.151
|
75 |
Bowen P K, Drelich J, Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents [J]. Adv. Mater., 2013, 25: 2577
doi: 10.1002/adma.201300226
|
76 |
Bowen P K, Guillory II R J, Shearier E R, et al. Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents [J]. Mater. Sci. Eng., 2015, C56: 467
|
77 |
Pierson D, Edick J, Tauscher A, et al. A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials [J]. J. Biomed. Mater. Res., 2012, 100B: 58
doi: 10.1002/jbm.b.31922
|
78 |
Yang H T, Wang C, Liu C Q, et al. Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model [J]. Biomaterials, 2017, 145: 92
doi: S0142-9612(17)30532-X
pmid: 28858721
|
79 |
Zhao S, Seitz J M, Eifler R, et al. Zn-Li alloy after extrusion and drawing: Structural, mechanical characterization, and biodegradation in abdominal aorta of rat [J]. Mater. Sci. Eng., 2017, C76: 301
|
80 |
Jin H L, Zhao S, Guillory R, et al. Novel high-strength, low-alloys Zn-Mg (< 0.1wt% Mg) and their arterial biodegradation [J]. Mater. Sci. Eng., 2018, C84: 67
|
81 |
Bowen P K, Seitz J M, Guillory II R J, et al. Evaluation of wrought Zn-Al alloys (1, 3, and 5 wt % Al) through mechanical and in vivo testing for stent applications [J]. J. Biomed. Mater. Res., 2018, 106B: 245
|
82 |
Tang L P, Eaton J W. Inflammatory responses to biomaterials [J]. Am. J. Clin. Pathol., 1995, 103: 466
doi: 10.1093/ajcp/103.4.466
pmid: 7726145
|
83 |
Lane J P, Perkins L E L, Sheehy A J, et al. Lumen gain and restoration of pulsatility after implantation of a bioresorbable vascular scaffold in porcine coronary arteries [J]. JACC: Cardiovasc. Interventions, 2014, 7: 688
doi: 10.1016/j.jcin.2013.11.024
|
84 |
Zhou C, Li H F, Yin Y X, et al. Long-term in vivo study of biodegradable Zn-Cu stent: A 2-year implantation evaluation in porcine coronary artery [J]. Acta Biomater., 2019, 97: 657
doi: S1742-7061(19)30559-8
pmid: 31401346
|
85 |
Oliver A A, Guillory II R J, Flom K L, et al. Analysis of vascular inflammation against bioresorbable Zn-Ag-based alloys [J]. ACS Appl. Bio Mater., 2020, 3: 6779
doi: 10.1021/acsabm.0c00740
|
86 |
Drelich A J, Zhao S, Guillory II R J, et al. Long-term surveillance of zinc implant in murine artery: Surprisingly steady biocorrosion rate [J]. Acta Biomater., 2017, 58: 539
doi: S1742-7061(17)30336-7
pmid: 28532901
|
87 |
Yang H T, Qu X H, Wang M Q, et al. Zn-0.4Li alloy shows great potential for the fixation and healing of bone fractures at load-bearing sites [J]. Chem. Eng. J., 2021, 417: 129317
doi: 10.1016/j.cej.2021.129317
|
88 |
Jia B, Yang H T, Han Y, et al. In vitro and in vivo studies of Zn-Mn biodegradable metals designed for orthopedic applications [J]. Acta Biomater., 2020, 108: 358
doi: S1742-7061(20)30141-0
pmid: 32165194
|
89 |
Jia B, Yang H T, Zhang Z C, et al. Biodegradable Zn-Sr alloy for bone regeneration in rat femoral condyle defect model: In vitro and in vivo studies [J]. Bioact. Mater., 2021, 6: 1588
doi: 10.1016/j.bioactmat.2020.11.007
pmid: 33294736
|
90 |
Guo P S, Zhu X L, Yang L J, et al. Ultrafine- and uniform-grained biodegradable Zn-0.5Mn alloy: Grain refinement mechanism, corrosion behavior, and biocompatibility in vivo [J]. Mater. Sci. Eng., 2021, C118: 111391
|
91 |
Yang H T, Jia B, Zhang Z C, et al. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications [J]. Nat. Commun., 2020, 11: 401
doi: 10.1038/s41467-019-14153-7
pmid: 31964879
|
92 |
Guo H, Hu J L, Shen Z Q, et al. In vitro and in vivo studies of biodegradable Zn-Li-Mn alloy staples designed for gastrointestinal anastomosis [J]. Acta Biomater., 2021, 121: 713
doi: 10.1016/j.actbio.2020.12.017
pmid: 33321221
|
93 |
Kafri A, Ovadia S, Yosafovich-Doitch G, et al. In vivo performances of pure Zn and Zn-Fe alloy as biodegradable implants [J]. J. Mater. Sci.: Mater. Med., 2018, 29: 94
doi: 10.1007/s10856-018-6096-7
|
94 |
Qu X H, Yang H T, Jia B, et al. Biodegradable Zn-Cu alloys show antibacterial activity against MRSA bone infection by inhibiting pathogen adhesion and biofilm formation [J]. Acta Biomater., 2020, 117: 400
doi: 10.1016/j.actbio.2020.09.041
pmid: 33007485
|
95 |
Lin J X, Tong X, Shi Z M, et al. A biodegradable Zn-1Cu-0.1Ti alloy with antibacterial properties for orthopedic applications [J]. Acta Biomater., 2020, 106: 410
doi: S1742-7061(20)30096-9
pmid: 32068137
|
96 |
Lin S, Ran X L, Yan X H, et al. Systematical evolution on a Zn-Mg alloy potentially developed for biodegradable cardiovascular stents [J]. J. Mater. Sci.: Mater. Med., 2019, 30: 122
doi: 10.1007/s10856-019-6324-9
|
97 |
Tong X, Shi Z M, Xu L C, et al. Degradation behavior, cytotoxicity, hemolysis, and antibacterial properties of electro-deposited Zn-Cu metal foams as potential biodegradable bone implants [J]. Acta Biomater., 2020, 102: 481
doi: S1742-7061(19)30781-0
pmid: 31740321
|
98 |
Peng F, Xie J N, Liu H M, et al. Shifting focus from bacteria to host neutrophil extracellular traps of biodegradable pure Zn to combat implant centered infection [J]. Bioact. Mater., 2023, 21: 436
doi: 10.1016/j.bioactmat.2022.09.004
pmid: 36185738
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|