Please wait a minute...
金属学报  2021, Vol. 57 Issue (10): 1215-1228    DOI: 10.11900/0412.1961.2021.00153
  综述 本期目录 | 过刊浏览 |
国内航空发动机涡轮盘用铸锻难变形高温合金热加工研究现状与展望
张瑞1, 刘鹏1, 崔传勇1(), 曲敬龙2, 张北江2, 杜金辉2, 周亦胄1, 孙晓峰1
1.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2.钢铁研究总院 高温材料研究所 北京 100081
Present Research Situation and Prospect of Hot Working of Cast & Wrought Superalloys for Aero-Engine Turbine Disk in China
ZHANG Rui1, LIU Peng1, CUI Chuanyong1(), QU Jinglong2, ZHANG Beijiang2, DU Jinhui2, ZHOU Yizhou1, SUN Xiaofeng1
1.Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.High-Temperature Materials Division, Central Iron and Steel Research Institute, Beijing 100081, China
引用本文:

张瑞, 刘鹏, 崔传勇, 曲敬龙, 张北江, 杜金辉, 周亦胄, 孙晓峰. 国内航空发动机涡轮盘用铸锻难变形高温合金热加工研究现状与展望[J]. 金属学报, 2021, 57(10): 1215-1228.
Rui ZHANG, Peng LIU, Chuanyong CUI, Jinglong QU, Beijiang ZHANG, Jinhui DU, Yizhou ZHOU, Xiaofeng SUN. Present Research Situation and Prospect of Hot Working of Cast & Wrought Superalloys for Aero-Engine Turbine Disk in China[J]. Acta Metall Sin, 2021, 57(10): 1215-1228.

全文: PDF(4039 KB)   HTML
摘要: 

近年来我国对高性能航空发动机的需求越来越迫切,随之涡轮盘用合金服役环境也越来越苛刻,耐700℃以上的GH4065、GH4720Li、GH4068和GH4151等一系列涡轮盘用铸锻合金被广泛研究、制备或使用。为了促进这类合金的发展和综合性能提升,本文从合金种类、均匀化处理工艺、铸锭开坯、盘件制备和组织性能调控等方面综述了我国涡轮盘用铸锻难变形合金的热加工研究现状,凝练出这类合金在研究制备过程中的短板问题,并对未来的工作方向进行了展望,借此促进涡轮盘用铸锻难变形高温合金的发展和工艺稳定性的提升。

关键词 涡轮盘铸锻难变形高温合金热加工组织与性能    
Abstract

In recent years, the demand for high-performance aero-engines has become crucial in China, and the service environment of turbine disk alloy becomes increasingly severe. A series of high resistant cast & wrought superalloys for turbine disks, such as GH4065, GH4720Li, GH4068, and GH4151, with working temperatures > 700°C, have been studied, produced, and applied widely. The current studies on cast & wrought alloys for turbine disks in China were summarized under the categories of homogenization treatment, cogging, disk forging, and microstructure and property regulation to promote the development of these superalloys and improve their comprehensive properties. The difficulties encountered during the research and preparation of these hard-to-deform superalloys and explored the alloys' potential development trend were outlined. The review would improve the production stability of the disk superalloys and promote their development.

Key wordsturbine disk    cast & wrought superalloy    hot working    microstructure and property
收稿日期: 2021-04-12     
ZTFLH:  TG14  
基金资助:国家重点研发计划项目(2019YFA0705300、2017YFA0700703);国家科技重大专项项目(2019-VI-0006-0120);辽宁省博士启动基金项目(2020-BS-007);中国科学院金属研究所创新基金项目(2021-PY09)
作者简介: 张 瑞,男,1989年生,博士
图1  镍基高温合金中的合金化元素[10]
AlloyCoCrTiAlNbMoWCNi
GH4065[11]13.016.03.72.10.74.04.00.020Bal.
GH4720Li[12]15.015.05.02.5-3.01.20.015Bal.
GH4068[13]25.014.05.72.2-2.81.20.015Bal.
GH4151[14]15.09.02.83.73.44.52.50.080Bal.
表1  典型航空发动机涡轮盘用变形高温合金的名义成分[11~14] (mass fraction / %)
Alloyw(Al + Ti + Nb)w(W + Mo)w(W) / w(Mo)w(Al) / w(Ti)w(γ') at 760oCγ' solvus temperature
%%%oC
GH40656.58.01.000.57361113
GH4720Li7.54.20.400.50451158
GH40687.93.90.430.39481160
GH41519.97.00.561.32541176
表2  典型航空发动机涡轮盘用变形高温合金的特征参数[15]
图2  GH4151合金真空感应熔炼(VIM)铸锭(直径80 mm)显微组织[26]
图3  GH4720Li合金铸锭中枝晶间析出相形貌及元素分布图[27]
图4  GH4065合金开坯工艺不当造成的不均匀晶粒组织[15](a) low-magnification (b) residual as-cast structure
图5  双锥形试样压缩示意图[34]
图6  GH4068合金开坯前后的微观组织状态
图7  GH4068合金的动态再结晶机制[43](a) discontinuous dynamic recrystallization (DRX—dynamic recrystallization)(b) continuous dynamic recrystallization(c) heteroepitaxial dynamic recrystallization
图8  基于组织演变的GH4068合金的热加工图[37]
图9  基于组织演变的U720Li合金热加工图[42]
图10  双相细晶组织GH4068合金的超塑性变形行为
图11  不同固溶处理冷却方式下GH4068合金中γ'相形貌[48](a) air cooling (b, c) slow cooling
AlloyTemperatureστA
oCMPah%
GH4065[5]6509702974
750590519
GH4720Li[19]68083020911
73053016632
GH40686808305006
75053020815
GH415165010101725
7506201328
表3  典型航空发动机涡轮盘用变形高温合金的持久性能[5,19]
图12  几种典型合金的蠕变变形机制[48]
1 Logunov A V, Zavodov S A, Danilov D V. The challenges in development of nickel-based heat-resistant superalloys for gas turbine disks and creation of a new superalloy with increased operational characteristics [J]. Mater. Today: Proc., 2019, 11: 459
2 Gu Y F, Fukuda T, Cui C Y, et al. Comparison of mechanical properties of TMW alloys, new generation of cast-and-wrought superalloys for disk applications [J]. Metall. Mater. Trans., 2009, 40A: 3047
3 Li F L, Fu R, Yin F J, et al. Impact of γ′ (Ni3 (Al, Ti)) phase on dynamic recrystallization of a Ni-based disk superalloy during isothermal compression [J]. J. Alloys Compd., 2017, 693: 1076
4 Reed R C. The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2008: 217
5 Zhao G P, Huang S, Zhang B J, et al. Microstructure control and mechanical properties of the newest nickel-based wrought superalloy GH4065A [J]. J. Iron Steel Res., 2015, 27(2): 37
5 赵光普, 黄 烁, 张北江等. 新一代镍基变形高温合金GH4065A的组织控制与力学性能 [J]. 钢铁研究学报, 2015, 27(2): 37
6 Qu J L, Bi Z N, Du J H, et al. Research on process optimization of isothermal forging for superalloy GH4720Li disc [A]. Proceedings of the 12th China Superalloy Annual Meeting [C]. Beijing: the Chinese Society for Metals, 2011: 263
6 曲敬龙, 毕中南, 杜金辉等. GH4720Li合金盘锻件的等温锻造工艺优化研究 [A]. 第十二届中国高温合金年会论文集 [C]. 北京: 中国金属学会, 2011: 263
7 Cui C Y, Jin T, Sun X F. A nickel-cobalt base superalloy with good microstructure stability and easy processing ability [P]. Chin Pat, 201010505227.3, 2012
7 崔传勇, 金 涛, 孙晓峰. 一种组织稳定性好、易加工的镍钴基高温合金 [P]. 中国专利, 201010505227.3, 2012)
8 Lv S M, Chen J B, He X B, et al. Investigation on Sub-Solvus recrystallization mechanisms in an advanced γ-γ' nickel-based superalloy GH4151 [J]. Materials, 2020, 13: 4553
9 Liu F F, Chen J Y, Dong J X, et al. The hot deformation behaviors of coarse, fine and mixed grain for Udimet 720Li superalloy [J]. Mater. Sci. Eng., 2016, A651: 102
10 Ning Y Q, Zhang B Y. Hot forming of superalloy parts and structures [A]. Reference Module in Materials Science and Materials Engineering [C]. Amsterdam: Elsevier, 2020: 1
11 Huang S, Zhang B J, Tian Q, et al. Isothermal and static oxidation behavior of superalloy GH4065A [J]. J. Iron Steel Res., 2016, 28(7): 55
11 黄 烁, 张北江, 田 强等. 高温合金GH4065A的恒温静态氧化行为 [J]. 钢铁研究学报, 2016, 28(7): 55
12 Du J H, Qu J L, Deng Q, et al. As-cast microstructure and homogenization process of alloy GH720Li [J]. J. Iron Steel Res., 2005, 17(3): 60
12 杜金辉, 曲敬龙, 邓 群等. GH720Li合金的铸态组织和均匀化工艺 [J]. 钢铁研究学报, 2005, 17(3): 60
13 Zhou Z J, Zhang R, Cui C Y, et al. Effects of homogenization treatment on the microsegregation of a Ni-Co based superalloy produced by directional solidification [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 943
14 Bi Z N, Qu J L, Du J H, et al. Segregation behavior and investigation on homogenization for a new difficult-to-deform superalloy ЭК151 ingot [J]. J. Iron Steel Res., 2011, 23(suppl.2): 263
14 毕中南, 曲敬龙, 杜金辉等. 新型难变形高温合金ЭК151的偏析行为及均匀化工艺研究 [J]. 钢铁研究学报, 2011, 23(): 263
15 Zhang B J, Huang S, Zhang W Y, et al. Recent development of nickel-based disc alloys and corresponding cast-wrought processing techniques [J]. Acta Metall. Sin., 2019, 55: 1095
15 张北江, 黄 烁, 张文云等. 变形高温合金盘材及其制备技术研究进展 [J]. 金属学报, 2019, 55: 1095
16 Zhang B J, Zhao G P, Zhang W Y, et al. Investigation of high performance disc alloy GH4065 and associated advanced processing techniques [J]. Acta Metall. Sin., 2015, 51: 1227
16 张北江, 赵光普, 张文云等. 高性能涡轮盘材料GH4065及其先进制备技术研究 [J]. 金属学报, 2015, 51: 1227
17 Zhang R, Tian C G, Cui C Y, et al. Portevin-Le Châtelier effect in a wrought Ni-Co based superalloy [J]. J. Alloys Compd., 2020, 818: 152863
18 Cui C Y, Zhang R, Zhou Y Z, et al. Portevin-Le Châtelier effect in wrought Ni-based superalloys: Experiments and mechanisms [J]. J. Mater. Sci. Technol., 2020, 51: 16
19 Wang Q Z, Shi L, Tang C. Metallurgy quality of GH4720Li alloy by VIM + PESR + VAR [J]. Baosteel Tech., 2020, (3): 62
19 王庆增, 石 磊, 唐 超. GH4720Li合金VIM+PESR+VAR三联工艺及冶金质量 [J]. 宝钢技术, 2020, (3): 62
20 Du J H, Lv X D, Dong J X, et al. Research progress of wrought superalloys in China [J]. Acta Metall. Sin., 2019, 55: 1115
20 杜金辉, 吕旭东, 董建新等. 国内变形高温合金研制进展 [J]. 金属学报, 2019, 55: 1115
21 Li F L, Fu R, Feng D, et al. Microstructure and segregation behavior of Rene88DT alloy prepared by ESR-CDS [J]. Rare Met. Mater. Eng., 2016, 45: 1437
22 Zhuang X P, Tan Y, Zhao L H, et al. Microsegregation of a new Ni-Co-based superalloy prepared through electron beam smelting and its homogenization treatment [J]. J. Mater. Res. Technol., 2020, 9: 5422
23 Fu R, Li F L, Yin F J, et al. Microstructure evolution and deformation mechanisms of the electroslag refined-continuous directionally solidified (ESR-CDS®) superalloy Rene88DT during isothermal compression [J]. Mater. Sci. Eng., 2015, A638: 152
24 Wang Z X, Huang S, Zhang B J, et al. Study on freckle of a high-alloyed GH4065 nickel base wrought superalloy [J]. Acta Metall. Sin., 2019, 55: 417
24 王资兴, 黄 烁, 张北江等. 高合金化GH4065镍基变形高温合金点状偏析研究 [J]. 金属学报, 2019, 55: 417
25 Bi Z N, Qu J L, Du J H, et al. Microstructure characteristics and thermodynamic calculation of equilibrium precipitated phases in a new difficult-to-deform superalloy ЭК151 [J]. Rare Met. Mater. Eng., 2013, 42: 919
25 毕中南, 曲敬龙, 杜金辉等. 新型难变形高温合金ЭК151的组织特征及平衡析出相热力学计算 [J]. 稀有金属材料与工程, 2013, 42: 919
26 Li X X, Jia C L, Jiang Z H, et al. Investigation of solidification behavior in a new high alloy Ni-based superalloy [J]. JOM, 2020, 72: 4139
27 Chang L T, Jin H, Sun W R. Solidification behavior of Ni-base superalloy Udimet 720Li [J]. J. Alloys Compd., 2015, 653: 266
28 Li X X, Jia C L, Zhang Y, et al. Segregation and homogenization for a new nickel-based superalloy [J]. Vacuum, 2020, 177: 109379
29 Semiatin S L, Kramb R C, Turner R E, et al. Analysis of the homogenization of a nickel-base superalloy [J]. Scr. Mater., 2004, 51: 491
30 Zhu Y X. Shi Changxu's major contributions in the field of superalloy [J]. Sci. Technol. Rev., 2018, 36(19): 21
30 朱耀宵. 师昌绪在高温合金领域的重大贡献 [J]. 科技导报, 2018, 36(19): 21
31 Qu J L, Du J H, Deng Q, et al. Effect of compound jacketing rolling process on microstructure of difficult-to-deform superalloy GH720Li [J]. Mater. Sci. Technol., 2008, 16: 121
31 曲敬龙, 杜金辉, 邓 群等. 复合包套轧制工艺对难变形高温合金GH720Li组织的影响 [J]. 材料科学与工艺, 2008, 16: 121
32 Cao Y X, Application of the soft package technology on titanium alloy forging [J]. Aviat. Maint. Eng., 2015, (12): 92
32 曹颖玺. 钛合金锻造软包套工艺应用研究 [J]. 航空维修与工程, 2015, (12): 92
33 Semiatin S L, Weaver D S, Kramb R C, et al. Deformation and recrystallization behavior during hot working of a coarse-grain, nickel-base superalloy ingot material [J]. Metall. Mater. Trans, 2004, 35A: 679
34 Fan H Y, Jiang H, Dong J X, et al. An optimization method of upsetting process for homogenized, nickel-based superalloy Udimet 720Li ingot considering both cracking and recrystallization [J]. J. Mater. Process. Technol., 2019, 269: 52
35 Chen X M, Lin Y C, Wen D X, et al. Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation [J]. Mater. Des., 2014, 57: 568
36 Kan Z. Study on microstructure evolvement and forging technology of great size bar for GH4720Li alloy [D]. Shenyang: Northeastern University, 2017
36 阚 志. GH4720Li合金微观组织演变及大尺寸棒坯锻造工艺研究 [D]. 沈阳: 东北大学, 2017
37 Liu P, Zhang R, Yuan Y, et al. Hot deformation behavior and workability of a Ni-Co based superalloy [J]. J. Alloys Compd., 2020, 831: 154618
38 Han G M, Li F, Sun B D. Multimodal distribution of γ′ phase and effect on hot deformation in a wrought nickel base superalloy [J]. Rare Met. Mater. Eng., 2019, 48: 2821
39 Li F, Fu R, Feng D, et al. Microstructure evolution during hot deformation of as cast ESR-CDSed superalloy Rene88DT [J]. Mater. Res. Innov., 2014, 18(suppl. 4): S4-421
40 Ning Y Q, Wang T, Fu M W, et al. Competition between work-hardening effect and dynamic-softening behavior for processing as-cast GH4720Li superalloys with original dendrite microstructure during moderate-speed hot compression [J]. Mater. Sci. Eng., 2015, A642: 187
41 Wang M J, Wang W R, Liu Z L, et al. Hot workability integrating processing and activation energy maps of Inconel 740 superalloy [J]. Mater. Today Commun., 2018, 14: 188
42 Wan Z P, Hu L X, Sun Y, et al. Hot deformation behavior and processing workability of a Ni-based alloy [J]. J. Alloys Compd., 2018, 769: 367
43 Liu P, Zhang R, Yuan Y, et al. Microstructural evolution of a Ni-Co based superalloy during hot compression at γ′ sub-/supersolvus temperatures [J]. J. Mater. Sci. Technol., 2020, 77: 66
44 Katnagallu S, Vernier S, Charpagne M A, et al. Nucleation mechanism of hetero-epitaxial recrystallization in wrought nickel-based superalloys [J]. Scr. Mater., 2021, 191: 7
45 Qu J L, Bi Z N, Du J H, et al. Hot deformation behavior of nickel-based superalloy GH4720Li [J]. J. Iron Steel Res. Int., 2011, 18: 59
46 Zhou G, Han Y B, Qu J L, et al. A comparative study of various flow instability criteria in processing map of superalloy U720Li [J]. J Northeastern Univ (Nat Sci), 2012, 33: 702
46 周 舸, 韩寅奔, 曲敬龙等. U720Li镍基高温合金不同失稳判据的热加工图 [J]. 东北大学学报(自然科学版), 2012, 33: 702
47 Shen J Y, Hu L X, Sun Y, et al. Hot deformation behaviors and three-dimensional processing map of a nickel-based superalloy with initial dendrite microstructure [J]. J. Alloys Compd., 2020, 822: 153735
48 Xu L. Investigation on microstructures and mechanical properties of Ni-Co based wrought superalloys [D]. Beijing: University of Chinese Academy of Sciences, 2014
48 徐 玲. Ni-Co基变形高温合金组织性能研究 [D]. 北京: 中国科学院大学, 2014
49 Xu L, Chu Z K, Cui C Y, et al. Creep mechanism of a Ni-Co base wrought superalloy [J]. Acta Metall. Sin., 2013, 49: 863
49 徐 玲, 储昭贶, 崔传勇等. 一种镍钴基变形高温合金蠕变变形机制的研究 [J]. 金属学报, 2013, 49: 863
50 Gu Y F, Cui C Y, Yuan Y, et al. Research progress in a high performance cast & wrought superalloy for turbine disc applications [J]. Acta Metall. Sin., 2015, 51: 1191
50 谷月峰, 崔传勇, 袁 勇等. 一种高性能航空涡轮盘用铸锻合金的研究进展 [J]. 金属学报, 2015, 51: 1191
51 Xu H, Zhang Z J, Zhang P, et al. The synchronous improvement of strength and plasticity (SISP) in new Ni-Co based disc superalloys by controling stacking fault energy [J]. Sci. Rep., 2017, 7: 8046
52 Zhu C Z, Zhang R, Cui C Y, et al. Effect of Ta addition on the microstructure and tensile properties of a Ni-Co base superalloy [J]. Metall. Mater. Trans., 2021, 52A: 108
53 Zhu C Z, Zhang R, Cui C Y, et al. Influence of Ta content on microstructure and creep behavior of a Ni-Co base disc superalloy [J]. Mater. Sci. Eng., 2021, A802: 140646
54 Xu H, Zhang Z J, Zhang P, et al. Formation of nanograins in Ni-Co based superalloys compressed quasistatically at high temperature [J]. Scr. Mater., 2017, 136: 92
[1] 董昕远, 雒晓涛, 李成新, 李长久. B清除大气等离子喷涂CuNi熔滴氧化物效应[J]. 金属学报, 2022, 58(2): 206-214.
[2] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[3] 刘庆琦, 卢晔, 张翼飞, 范笑锋, 李瑞, 刘兴硕, 佟雪, 于鹏飞, 李工. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为[J]. 金属学报, 2021, 57(10): 1299-1308.
[4] 李天瑞, 刘国怀, 于少霞, 王文娟, 张风奕, 彭全义, 王昭东. 直接包套轧制铸态Ti-46Al-8Nb合金的组织特征及热变形机制[J]. 金属学报, 2020, 56(8): 1091-1102.
[5] 王涛,万志鹏,李钊,李佩桓,李鑫旭,韦康,张勇. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响[J]. 金属学报, 2020, 56(2): 182-192.
[6] 张勇, 李鑫旭, 韦康, 万志鹏, 贾崇林, 王涛, 李钊, 孙宇, 梁红艳. 850 ℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究[J]. 金属学报, 2020, 56(10): 1401-1410.
[7] 张国庆,张义文,郑亮,彭子超. 航空发动机用粉末高温合金及制备技术研究进展[J]. 金属学报, 2019, 55(9): 1133-1144.
[8] 毕中南,秦海龙,董志国,王相平,王鸣,刘永泉,杜金辉,张继. 高温合金盘锻件制备过程残余应力的演化规律及机制[J]. 金属学报, 2019, 55(9): 1160-1174.
[9] 肖伯律, 黄治冶, 马凯, 张星星, 马宗义. 非连续增强铝基复合材料的热变形行为研究进展[J]. 金属学报, 2019, 55(1): 59-72.
[10] 苏煜森, 杨银辉, 曹建春, 白于良. 节Ni型2101双相不锈钢的高温热加工行为研究[J]. 金属学报, 2018, 54(4): 485-493.
[11] 陈懿, 郭明星, 易龙, 袁波, 李高洁, 庄林忠, 张济山. 新型Al-Mg-Si-Cu-Zn合金板材组织、织构和性能的优化调控[J]. 金属学报, 2017, 53(8): 907-917.
[12] 张海,李时磊,刘刚,王艳丽. 热加工对Z3CN20-09M双相不锈钢组织及热老化冲击断裂行为的影响[J]. 金属学报, 2017, 53(5): 531-538.
[13] 高博,王磊,梁涛沙,刘杨,宋秀,曲敬龙. 定向凝固U720Li合金的高温塑性变形行为*[J]. 金属学报, 2016, 52(4): 437-444.
[14] 徐红勇,王文权,黄诗铭,程祥霞,任美璇. 等离子喷焊原位生成TiC硬质增强镍基耐磨层组织与性能*[J]. 金属学报, 2016, 52(11): 1423-1431.
[15] 张艳,郭明星,邢辉,王斐,汪小锋,张济山,庄林忠. 不同热加工工艺对Al-Mg-Si-Cu合金板材力学性能和组织的影响*[J]. 金属学报, 2015, 51(12): 1425-1434.