Please wait a minute...
金属学报  2018, Vol. 54 Issue (4): 519-526    DOI: 10.11900/0412.1961.2017.00373
  本期目录 | 过刊浏览 |
氘、氚在RAFM钢中的扩散渗透研究
范东军1, 陆光达2(), 张桂凯2, 包锦春2, 杨飞龙2, 向鑫2, 陈长安2
1 表面物理与化学重点实验室 绵阳 621908
2 中国工程物理研究院 绵阳 621907
Deuterium and Tritium Permeation in the Reduced Activation Ferritic/Martensitic Steel
Dongjun FAN1, Guangda LU2(), Guikai ZHANG2, Jinchun BAO2, Feilong YANG2, Xin XIANG2, Chang'an CHEN2
1 Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, China
2 China Academy of Engineering Physics, Mianyang 621907, China
引用本文:

范东军, 陆光达, 张桂凯, 包锦春, 杨飞龙, 向鑫, 陈长安. 氘、氚在RAFM钢中的扩散渗透研究[J]. 金属学报, 2018, 54(4): 519-526.
Dongjun FAN, Guangda LU, Guikai ZHANG, Jinchun BAO, Feilong YANG, Xin XIANG, Chang'an CHEN. Deuterium and Tritium Permeation in the Reduced Activation Ferritic/Martensitic Steel[J]. Acta Metall Sin, 2018, 54(4): 519-526.

全文: PDF(2778 KB)   HTML
摘要: 

采用气相渗透方法,对国产低活化铁素体/马氏体钢(RAFM钢)之一的中国低活化马氏体钢(CLAM钢)进行了氘(D)、氚(T)渗透实验,得出了573~873 K间,氘在CLAM钢中的渗透率ΦD=3.41×10-8exp(-39181/(RT)) (mol/(msPa0.5)),扩散系数DD=1.43×10-7exp(-22110/(RT)) (m2/s),溶解度常数SD=2.38×10-1exp(-17071/(RT)) (mol/(m3Pa0.5))。在573~823 K间,氚在CLAM钢中的渗透率为ΦT=2.50×10-8exp(-38493/(RT)) (mol/(msPa0.5)),并根据渗透的同位素效应比值,推导出氚在CLAM钢中的扩散系数DT=1.95×10-7exp(-22797/(RT)) (m2/s),溶解度常数ST=1.28×10-1exp(-15696/(RT)) (mol/(m3Pa0.5))。实验还发现,风冷降温使钢的氘渗透通量出现先升后降的异常现象,其产生的机制及其对工程应用的影响有待进一步研究。

关键词 氘(D)氚(T)RAFM钢气相渗透    
Abstract

Reduced activation ferritic/martensitic (RAFM) steel is the preferred structural material for test blanket module in fusion reactor. The study of the diffusion transport character of deuterium and tritium in the steel is of great significance for fuel recycling, tritium diffusion control, recovery and safety to China Fusion Engineering Test Reactor (CFETR) item. Two kind of RAFM steels have been developed in China and one of them, China low activation martensitic (CLAM) steel, is chosen to investigate its diffusive transport parameters of deuterium and tritium in this work. By gas-driven permeation experiment between 573 K and 873 K, deuterium transport parameters are measured. The permeability is: ΦD=3.41×10-8exp(-39181/(RT)) (mol/(msPa0.5)), the diffusion coefficient is DD=1.43×10-7exp(-22110/(RT)) (m2/s), the solubility constant is SD=2.38×10-1exp(-17071/(RT)) (mol/(m3Pa0.5)). Between 573 K and 823 K, the permeability of tritium is ΦT=2.50×10-8exp(-38493/(RT)) (mol/(msPa0.5)). According to the isotopes effect rule, the diffusion coefficient and solubility constant of tritium is deduced respectively: DT=1.95×10-7 exp(-22797/(RT)) (m2/s) and ST=1.28×10-1exp(-15696/(RT)) (mol/(m3Pa0.5)). A strange behavior appears in experiments with deuterium: after forced air cooling to the steel, the permeation flux through it quickly rise first and then anomaly lower for hours. The mechanism arousing the phenomenon and effects on use in engineering needs further investigation.

Key wordsdeuterium    tritium    RAFM steel    gas-driven permeation
收稿日期: 2017-09-05     
ZTFLH:  TG142  
基金资助:国家磁约束核聚变能发展研究专项项目No.2015GB109006和国家自然科学基金项目No.51471154
作者简介:

作者简介 范东军,男,1993年生,硕士生

图1  氘渗透和氚渗透实验盒示意图
图2  氘渗透率(ΦD) Arrhenius曲线图
图3  氘扩散系数(DD) Arrhenius曲线图
Material Φ0 EΦ D0 ED Ref.
10-8 molm-1s-1Pa-0.5 kJmol-1 10-8 m2s-1 kJmol-1
CLAM (D) 3.41 39.2 14.3 22.1 This work
CLAM (T) 2.50 38.5 - - This work
ARAA (H) 9.45 47.4 7.6 12.7 [32]
ARAA (D) 9.61 50.1 7.3 14.0 [32]
EUROFER 97 (H) 1.03 37.4 45.7 22.3 [33]
EUROFER 97 (D) 1.53 38.3 15.0 14.5 [10]
OPTIFER-IVb (H) 1.80 39.6 5.5 10.6 [34]
OPTIFER-IVb (D) 1.50 40.3 4.6 11.3 [35]
MANET (H) 2.93 43.1 7.2 13.5 [35]
MANET (D) 2.73 39.9 10.1 13.2 [33]
F82H (H) 4.90 39.3 18.0 14.1 [36]
F82H (D) 4.03 40.8. 10.7 13.9 [37]
CLAM (D) 5.40 46.8 38.1 24.0 [17]
CLF-1 (D) 1.76 43.9 10.2 16.9 [17]
表1  各类低活化铁素体/马氏体钢(RAFM钢)的渗透率常数Φ0、渗透活化能EΦ、扩散系数常数D0和扩散活化能ED
图4  氚渗透率(ΦT) Arrhenius曲线图
图5  氘、氚渗透率的同位素效应比值γ
图6  风冷降温后623和723 K 氘渗透通量随时间变化
图7  CLAM钢原始样品、炉冷降温样品和风冷降温样品显微组织的OM像
[1] Jones R H, Heinisch H L, McCarthy K A. Low activation materials [J]. J. Nucl. Mater., 1999, 271-272: 518
[2] Kohno Y, Kohyama A, Hirose T, et al. Mechanical property changes of low activation ferritic/martensitic steels after neutron irradiation [J]. J. Nucl. Mater., 1999, 271-272: 145
[3] Ehrlich K, Bloom E E, Kondo T. International strategy for fusion materials development [J]. J. Nucl. Mater., 2000, 283-287: 79
[4] Van Der Schaaf B, Gelles D S, Jitsukawa S, et al. Progress and critical issues of reduced activation ferritic/martensitic steel development [J]. J. Nucl. Mater., 2000, 283-287: 52
[5] Ehrlich K. Materials research towards a fusion reactor [J]. Fusion Eng. Des., 2001, 56-57: 71
[6] Muroga T, Gasparotto M, Zinkle S J. Overview of materials research for fusion reactors [J]. Fusion Eng. Des., 2002, 61-62: 13
[7] Klueh R L, Gelles D S, Jitsukawa S, et al. Ferritic/martensitic steels—Overview of recent results [J]. J. Nucl. Mater., 2002, 307-311: 455
[8] Wang P H, Nobuta Y, Hino T, et al.Helium retention and desorption behaviour of reduced activation ferritic/martenstic steel[J]. Plasma Sci. Technol., 2009, 11: 225
[9] Dolinsky Y N, Zouev Y N, Lyasota I A, et al. Permeation of deuterium and tritium through the martensitic steel F82H [J]. J. Nucl. Mater., 2002, 307-311: 1484
[10] Aiello A, Ricapito I, Benamati G, et al.Hydrogen isotopes permeability in Eurofer 97 martensitic steel[J]. Fusion Sci. Technol., 2002, 41: 872
[11] Klueh R L, Alexander D J, Rieth M.The effect of tantalum on the mechanical properties of a 9Cr-2W-0.25V-0.07Ta-0.1C steel[J]. J. Nucl. Mater., 1999, 273: 146
[12] Huang Q Y, Li C J, Li Y F, et al.R&D status of China low activation martensitic steel [A]. CORPHY-2008[C]. Hefei: Chinese Nuclear Society, 2008: 41(黄群英, 李春京, 李艳芬等. 中国低活化马氏体钢CLAM研究进展 [A].第十二届反应堆数值计算与粒子输运学术会议暨2008年反应堆物理会议[C]. 合肥: 中国核学会, 2008: 41)
[13] Zhao F, Qiao J S, Huang Y N, et al.Effect of irradiation temperature on void swelling of China low activation martensitic steel (CLAM)[J]. Mater. Charact., 2008, 59: 344
[14] Liu S J, Huang Q Y, Peng L, et al.Microstructure and its influence on mechanical properties of CLAM steel[J]. Fusion Eng. Des., 2012, 87: 1628
[15] Wang P H, Fu H Y, Chen J M, et al.Thermal ageing effect on the microstructure and mechanical properties of RAFM steel CLF-1[J]. Prog. Rep. China Nucl. Sci. Technol., 2009, 1: 56(王平怀, 付海英, 谌继明等. 时效处理对低活性铁素体/马氏体钢CLF-1组织及性能的影响[J]. 中国核科学技术进展报告, 2009, 1: 56)
[16] Wang P H, Chen J M, Fu H Y, et al.Technical issues for the fabrication of a CN-HCCB-TBM based on RAFM Steel CLF-1[J]. Plasma Sci. Technol., 2013, 15: 133
[17] Wang B, Liu L B, Xiang X, et al.Diffusive transport parameters of deuterium through China reduced activation ferritic-martensitic steels[J]. J. Nucl. Mater., 2016, 470: 30
[18] Liu L B, Dou T J, Wang B, et al.Thermal desorption behavior of retained deuterium in Chinese RAFM steel[J]. Mater. Rev., 2016, 30(14): 10(刘凌博, 窦天军, 王博等. 中国RAFM钢中驻留氘的热脱附行为研究[J]. 材料导报, 2016, 30(14): 10)
[19] He W B, Chen C A, Wang J J, et al.Exploring of tritium and helium behaviors in RAFM steels[J]. Mater. Rev., 2015, 29(17): 101(何伟波, 陈长安, 王佳佳等. RAFM钢中氚氦行为的研究进展[J]. 材料导报, 2015, 29(17): 101)
[20] Dolinski Y, Lyasota I, Shestakov A, et al. Heavy hydrogen isotopes penetration through austenitic and martensitic steels [J]. J. Nucl. Mater., 2000, 283-287: 854
[21] Zouev Y N, Podgornova I V, Sagaragze V V. Visualization of tritium distribution by autoradiography technique [J]. Fusion Eng. Des., 2000, 49-50: 971
[22] Otsuka T, Shimada M, Kolasinski R, et al.Application of tritium imaging plate technique to examine tritium behaviors on the surface and in the bulk of plasma-exposed materials[J]. J. Nucl. Mater., 2011, 415(suppl.1): S769
[23] Fedorov A V, Van Til S, Magielsen A J, et al.Tritium permeation in EUROFER in EXOTIC and LIBRETTO irradiation experiments[J]. Fusion Eng. Des., 2013, 88: 2918
[24] Jiang G Q, Luo D L, Lu G D, et al.Tritium and Industry Techniques of Tritium [M]. Beijing: National Defense Industry Press, 2007: 54(蒋国强, 罗德礼, 陆光达等. 氚和氚的工程技术 [M]. 北京: 国防工业出版社, 2007: 54)
[25] Pisarev A, Shestakov V, Kulsartov S, et al.Surface effects in diffusion measurements: Deuterium permeation through martensitic steel[J]. Phys. Scr., 2001, T94: 121
[26] Richardson O W.XXV. The solubility and diffusion in solution of dissociated gases[J]. Philos. Mag., 1904, 7: 266
[27] Nakamura H, Isobe K, Nakamichi M, et al.Evaluation of deuterium permeation reduction factor of various coatings deposited on ferritic/martensitic steels for development of tritium permeation barrier[J]. Fusion Eng. Des., 2010, 85: 1531
[28] Crank J.The Mathematics of Diffusion [M]. 2nd Ed., Oxford: Clarendon Press, 1975: 17
[29] Latanision R M, Kurkela M.Hydrogen permeability and diffusivity in nickel and Ni-base alloys[J]. Corrosion, 1983, 39: 174
[30] Sun X K, Xu J A, Li Y Y.Hydrogen permeation behavior in austenitic stainless-steels[J]. Mater Sci. Eng., 1989, A114: 179
[31] Wang P X, Song J S.Helium in Materials and the Permeation of Tritium [M]. Beijing: National Defense Industry Press, 2002: 81(王佩璇, 宋家树. 材料中的氦及氚渗透 [M]. 北京: 国防工业出版社, 2002: 81)
[32] Noh S J, Lee S K, Byeon W J, et al.Transport of hydrogen and deuterium in the reduced activation martensitic steel ARAA[J]. Fusion Eng. Des., 2014, 89: 2726
[33] Esteban G A, Pe?a A, Legarda F, et al.Hydrogen transport and trapping in ODS-EUROFER[J]. Fusion Eng. Des., 2007, 82: 2634
[34] Esteban G A, Perujo A, Douglas K, et al.Tritium diffusive transport parameters and trapping effects in the reduced activating martensitic steel OPTIFER-IVb[J]. J. Nucl. Mater., 2000, 281: 34
[35] Forcey K S, Ross D K, Simpson J C B, et al. Hydrogen transport and solubility in 316L and 1.4914 steels for fusion reactor applications[J]. J. Nucl. Mater., 1988, 160: 117
[36] Serra E, Benamati G.Hydrogen behaviour in aged low activation martensitic steel F82H for fusion reactor applications[J]. Mater. Sci. Technol., 1998, 14: 573
[37] Serra E, Perujo A, Benamati G.Influence of traps on the deuterium behaviour in the low activation martensitic steels F82H and Batman[J]. J. Nucl. Mater., 1997, 245: 108
[38] Zhang G K, Huang G Q, Hu M J, et al.Stability and clusterization of hydrogen-vacancy complexes in B2-FeAl: Insight from hydrogen embrittlement[J]. RSC Adv., 2017, 7: 11094
[1] 杨累, 赵帆, 姜磊, 谢建新. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发[J]. 金属学报, 2023, 59(11): 1499-1512.
[2] 陈学双, 黄兴民, 刘俊杰, 吕超, 张娟. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59(11): 1448-1456.
[3] 宋逸思 廖瑜 李传维 陈益华 顾剑锋. 逆转变奥氏体对0Cr16Ni5Mo1超级马氏体不锈钢低温冲击韧性的影响[J]. 金属学报, 0, (): 0-0.
[4] 王楠, 陈永楠, 赵秦阳, 武刚, 张震, 罗金恒. 应变速率对X80管线钢铁素体/贝氏体应变分配行为的影响[J]. 金属学报, 2023, 59(10): 1299-1310.
[5] 张文彬 李小龙 郝硕 刘胜杰 蔡星周 陈雷 金淼. TRIP型双相不锈钢Fe-19.6Cr-2Ni-2.9Mn-1.6Si的微裂纹形核及扩展研究[J]. 金属学报, 0, (): 0-0.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[8] 李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
[9] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[10] 程胜 孙阳 赵文辉 栾义坤 郑成武 李殿中. GCr15钢滚动轴承疲劳剥落失效过程中一种针状相的形成[J]. 金属学报, 0, (): 0-0.
[11] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[12] 贾春妮 刘腾远 郑成武 王培 李殿中. 中锰钢奥氏体中化学界面变形行为的晶体塑性模型[J]. 金属学报, 0, (): 0-0.
[13] 王周头, 袁清, 张庆枭, 刘升, 徐光. 冷轧中碳梯度马氏体钢的组织与力学性能[J]. 金属学报, 2023, 59(6): 821-828.
[14] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[15] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.