|
|
氘、氚在RAFM钢中的扩散渗透研究 |
范东军1, 陆光达2( ), 张桂凯2, 包锦春2, 杨飞龙2, 向鑫2, 陈长安2 |
1 表面物理与化学重点实验室 绵阳 621908 2 中国工程物理研究院 绵阳 621907 |
|
Deuterium and Tritium Permeation in the Reduced Activation Ferritic/Martensitic Steel |
Dongjun FAN1, Guangda LU2( ), Guikai ZHANG2, Jinchun BAO2, Feilong YANG2, Xin XIANG2, Chang'an CHEN2 |
1 Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, China 2 China Academy of Engineering Physics, Mianyang 621907, China |
引用本文:
范东军, 陆光达, 张桂凯, 包锦春, 杨飞龙, 向鑫, 陈长安. 氘、氚在RAFM钢中的扩散渗透研究[J]. 金属学报, 2018, 54(4): 519-526.
Dongjun FAN,
Guangda LU,
Guikai ZHANG,
Jinchun BAO,
Feilong YANG,
Xin XIANG,
Chang'an CHEN.
Deuterium and Tritium Permeation in the Reduced Activation Ferritic/Martensitic Steel[J]. Acta Metall Sin, 2018, 54(4): 519-526.
[1] | Jones R H, Heinisch H L, McCarthy K A. Low activation materials [J]. J. Nucl. Mater., 1999, 271-272: 518 | [2] | Kohno Y, Kohyama A, Hirose T, et al. Mechanical property changes of low activation ferritic/martensitic steels after neutron irradiation [J]. J. Nucl. Mater., 1999, 271-272: 145 | [3] | Ehrlich K, Bloom E E, Kondo T. International strategy for fusion materials development [J]. J. Nucl. Mater., 2000, 283-287: 79 | [4] | Van Der Schaaf B, Gelles D S, Jitsukawa S, et al. Progress and critical issues of reduced activation ferritic/martensitic steel development [J]. J. Nucl. Mater., 2000, 283-287: 52 | [5] | Ehrlich K. Materials research towards a fusion reactor [J]. Fusion Eng. Des., 2001, 56-57: 71 | [6] | Muroga T, Gasparotto M, Zinkle S J. Overview of materials research for fusion reactors [J]. Fusion Eng. Des., 2002, 61-62: 13 | [7] | Klueh R L, Gelles D S, Jitsukawa S, et al. Ferritic/martensitic steels—Overview of recent results [J]. J. Nucl. Mater., 2002, 307-311: 455 | [8] | Wang P H, Nobuta Y, Hino T, et al.Helium retention and desorption behaviour of reduced activation ferritic/martenstic steel[J]. Plasma Sci. Technol., 2009, 11: 225 | [9] | Dolinsky Y N, Zouev Y N, Lyasota I A, et al. Permeation of deuterium and tritium through the martensitic steel F82H [J]. J. Nucl. Mater., 2002, 307-311: 1484 | [10] | Aiello A, Ricapito I, Benamati G, et al.Hydrogen isotopes permeability in Eurofer 97 martensitic steel[J]. Fusion Sci. Technol., 2002, 41: 872 | [11] | Klueh R L, Alexander D J, Rieth M.The effect of tantalum on the mechanical properties of a 9Cr-2W-0.25V-0.07Ta-0.1C steel[J]. J. Nucl. Mater., 1999, 273: 146 | [12] | Huang Q Y, Li C J, Li Y F, et al.R&D status of China low activation martensitic steel [A]. CORPHY-2008[C]. Hefei: Chinese Nuclear Society, 2008: 41(黄群英, 李春京, 李艳芬等. 中国低活化马氏体钢CLAM研究进展 [A].第十二届反应堆数值计算与粒子输运学术会议暨2008年反应堆物理会议[C]. 合肥: 中国核学会, 2008: 41) | [13] | Zhao F, Qiao J S, Huang Y N, et al.Effect of irradiation temperature on void swelling of China low activation martensitic steel (CLAM)[J]. Mater. Charact., 2008, 59: 344 | [14] | Liu S J, Huang Q Y, Peng L, et al.Microstructure and its influence on mechanical properties of CLAM steel[J]. Fusion Eng. Des., 2012, 87: 1628 | [15] | Wang P H, Fu H Y, Chen J M, et al.Thermal ageing effect on the microstructure and mechanical properties of RAFM steel CLF-1[J]. Prog. Rep. China Nucl. Sci. Technol., 2009, 1: 56(王平怀, 付海英, 谌继明等. 时效处理对低活性铁素体/马氏体钢CLF-1组织及性能的影响[J]. 中国核科学技术进展报告, 2009, 1: 56) | [16] | Wang P H, Chen J M, Fu H Y, et al.Technical issues for the fabrication of a CN-HCCB-TBM based on RAFM Steel CLF-1[J]. Plasma Sci. Technol., 2013, 15: 133 | [17] | Wang B, Liu L B, Xiang X, et al.Diffusive transport parameters of deuterium through China reduced activation ferritic-martensitic steels[J]. J. Nucl. Mater., 2016, 470: 30 | [18] | Liu L B, Dou T J, Wang B, et al.Thermal desorption behavior of retained deuterium in Chinese RAFM steel[J]. Mater. Rev., 2016, 30(14): 10(刘凌博, 窦天军, 王博等. 中国RAFM钢中驻留氘的热脱附行为研究[J]. 材料导报, 2016, 30(14): 10) | [19] | He W B, Chen C A, Wang J J, et al.Exploring of tritium and helium behaviors in RAFM steels[J]. Mater. Rev., 2015, 29(17): 101(何伟波, 陈长安, 王佳佳等. RAFM钢中氚氦行为的研究进展[J]. 材料导报, 2015, 29(17): 101) | [20] | Dolinski Y, Lyasota I, Shestakov A, et al. Heavy hydrogen isotopes penetration through austenitic and martensitic steels [J]. J. Nucl. Mater., 2000, 283-287: 854 | [21] | Zouev Y N, Podgornova I V, Sagaragze V V. Visualization of tritium distribution by autoradiography technique [J]. Fusion Eng. Des., 2000, 49-50: 971 | [22] | Otsuka T, Shimada M, Kolasinski R, et al.Application of tritium imaging plate technique to examine tritium behaviors on the surface and in the bulk of plasma-exposed materials[J]. J. Nucl. Mater., 2011, 415(suppl.1): S769 | [23] | Fedorov A V, Van Til S, Magielsen A J, et al.Tritium permeation in EUROFER in EXOTIC and LIBRETTO irradiation experiments[J]. Fusion Eng. Des., 2013, 88: 2918 | [24] | Jiang G Q, Luo D L, Lu G D, et al.Tritium and Industry Techniques of Tritium [M]. Beijing: National Defense Industry Press, 2007: 54(蒋国强, 罗德礼, 陆光达等. 氚和氚的工程技术 [M]. 北京: 国防工业出版社, 2007: 54) | [25] | Pisarev A, Shestakov V, Kulsartov S, et al.Surface effects in diffusion measurements: Deuterium permeation through martensitic steel[J]. Phys. Scr., 2001, T94: 121 | [26] | Richardson O W.XXV. The solubility and diffusion in solution of dissociated gases[J]. Philos. Mag., 1904, 7: 266 | [27] | Nakamura H, Isobe K, Nakamichi M, et al.Evaluation of deuterium permeation reduction factor of various coatings deposited on ferritic/martensitic steels for development of tritium permeation barrier[J]. Fusion Eng. Des., 2010, 85: 1531 | [28] | Crank J.The Mathematics of Diffusion [M]. 2nd Ed., Oxford: Clarendon Press, 1975: 17 | [29] | Latanision R M, Kurkela M.Hydrogen permeability and diffusivity in nickel and Ni-base alloys[J]. Corrosion, 1983, 39: 174 | [30] | Sun X K, Xu J A, Li Y Y.Hydrogen permeation behavior in austenitic stainless-steels[J]. Mater Sci. Eng., 1989, A114: 179 | [31] | Wang P X, Song J S.Helium in Materials and the Permeation of Tritium [M]. Beijing: National Defense Industry Press, 2002: 81(王佩璇, 宋家树. 材料中的氦及氚渗透 [M]. 北京: 国防工业出版社, 2002: 81) | [32] | Noh S J, Lee S K, Byeon W J, et al.Transport of hydrogen and deuterium in the reduced activation martensitic steel ARAA[J]. Fusion Eng. Des., 2014, 89: 2726 | [33] | Esteban G A, Pe?a A, Legarda F, et al.Hydrogen transport and trapping in ODS-EUROFER[J]. Fusion Eng. Des., 2007, 82: 2634 | [34] | Esteban G A, Perujo A, Douglas K, et al.Tritium diffusive transport parameters and trapping effects in the reduced activating martensitic steel OPTIFER-IVb[J]. J. Nucl. Mater., 2000, 281: 34 | [35] | Forcey K S, Ross D K, Simpson J C B, et al. Hydrogen transport and solubility in 316L and 1.4914 steels for fusion reactor applications[J]. J. Nucl. Mater., 1988, 160: 117 | [36] | Serra E, Benamati G.Hydrogen behaviour in aged low activation martensitic steel F82H for fusion reactor applications[J]. Mater. Sci. Technol., 1998, 14: 573 | [37] | Serra E, Perujo A, Benamati G.Influence of traps on the deuterium behaviour in the low activation martensitic steels F82H and Batman[J]. J. Nucl. Mater., 1997, 245: 108 | [38] | Zhang G K, Huang G Q, Hu M J, et al.Stability and clusterization of hydrogen-vacancy complexes in B2-FeAl: Insight from hydrogen embrittlement[J]. RSC Adv., 2017, 7: 11094 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|