Please wait a minute...
金属学报  2014, Vol. 50 Issue (7): 821-831    DOI: 10.3724/SP.J.1037.2013.00675
  本期目录 | 过刊浏览 |
GH4738合金涡轮盘锻造过程的集成式模拟及应用*
李林翰, 董建新, 张麦仓, 姚志浩()
北京科技大学材料科学与工程学院, 北京 100083
INTEGRATED SIMULATION OF THE FORGING PROCESS FOR GH4738 ALLOY TURBINE DISK AND ITS APPLICATION
LI Linhan, DONG Jianxin, ZHANG Maicang, YAO Zhihao()
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
引用本文:

李林翰, 董建新, 张麦仓, 姚志浩. GH4738合金涡轮盘锻造过程的集成式模拟及应用*[J]. 金属学报, 2014, 50(7): 821-831.
Linhan LI, Jianxin DONG, Maicang ZHANG, Zhihao YAO. INTEGRATED SIMULATION OF THE FORGING PROCESS FOR GH4738 ALLOY TURBINE DISK AND ITS APPLICATION[J]. Acta Metall Sin, 2014, 50(7): 821-831.

全文: PDF(8158 KB)   HTML
摘要: 

基于GH4738合金的热流变应力模型及晶粒组织演变模型, 提出并实现了利用Deform 3DTM软件对该合金涡轮盘从自由锻前预热直至模锻完成的整个锻造过程的集成式模拟. 借助集成式模拟实现了对锻件在整个锻造过程中温度、平均晶粒尺寸等参数的定量控制. 同时采用直径300 mm涡轮盘的实际锻造结果验证了所用模型和该模拟方法的可靠性. 最后, 把集成式模拟运用于直径1450 mm涡轮盘盘件的锻造过程模拟, 并根据模拟优化方案在8×104 t锻压机下成功锻制直径1450 mm涡轮盘盘件. 为大型变形高温合金涡轮盘的锻造成型提供了工艺优化的理论依据和研究方法.

关键词 GH4738合金涡轮盘集成式模拟    
Abstract

In order to control the grain size of forged turbine disk of wrought superalloy like GH4738 more effectively, constitutive equations and grain structure evolution models of GH4738 alloy are used in Deform 3DTM for achieving integrated simulation of whole forging process of GH4738 alloy turbine disk (from preheating billet for upsetting to die forging). By using of integrated simulation, the variation of temperature, average grain size, etc., during the whole forging process has been explored, making it possible to control these parameters quantitatively. Comparing with traditional simple stage simulation, results of integrated simulation are more consistent with corresponding experimental results of forged turbine disk (300 mm in diameter). Therefore, the reliability of the integrated simulation is verified. Finally, with the application of integrated simulation, GH4738 alloy turbine disk with a diameter of 1450 mm has been successfully forged by 8×104 t forging press. This work provides a more practical simulation method for helping the process design of forging large turbine disk.

Key wordsGH4738 alloy    turbine disk    integrated simulation
收稿日期: 2013-10-25     
ZTFLH:  TG132.32  
基金资助:*国家高技术研究发展计划资助项目2012AA03A513
作者简介: null

李林翰, 男, 1989年生, 博士生

图1  GH4738合金开坯后棒料的典型金相组织
图2  GH4738合金涡轮盘锻造流程示意图
图3  GH4738合金晶粒微观组织演变过程的有限元计算流程
图4  集成式模拟中棒料在自由锻前预热过程中温度和晶粒尺寸变化
图5  经1060和1080 ℃加热不同时间的平均晶粒尺寸变化
图6  不同转移时间下各位置模拟温降情况及实测值
图7  单一自由锻模拟与集成式模拟中坯料自由锻前后的平均晶粒尺寸分布
图8  单一自由锻模拟与集成式模拟中坯料自由锻前后的温度分布
图9  集成式模拟中坯料在自由锻空冷后的平均晶粒尺寸分布
图10  集成式模拟中镦粗后坯料在模锻前预热过程中温度和晶粒尺寸变化
图11  模锻预热完的包套坯料不同转移时间下各位置模拟温降情况及实测值
图12  转移时间达210 s的包套坯料模锻后的表面裂纹
图13  单一自由锻模拟与集成式模拟中坯料模锻前后的温度分布
  
图15  集成式模拟中坯料在模锻空冷后的平均晶粒尺寸分布
图16  直径300 mm涡轮盘锻造集成式模拟中, 中心纵截面最终平均晶粒尺寸分布与实际锻后的晶粒组织
图17  单一模拟方法得到的直径300 mm涡轮盘中心纵截面在锻造后的最终平均晶粒尺寸分布
图18  集成式模拟中中心纵截面1~5各位置点平均晶粒尺寸在锻造过程8个阶段中的变化
图19  集成式模拟的直径1450 mm涡轮盘在某工艺方案及其改进方案下锻后最终平均晶粒尺寸分布
[1] Chang K M, Liu X B. Mater Sci Eng, 2001; A308: 1
[2] Whelchel R L, Kelekanjeri V S K G, Gerhardt R A, Ilavsky J. Metall Mater Trans, 2011; 42A: 1362
[3] Yao Z H, Dong J X, Zhang M C, Zheng L. Rare Met Mater Eng, 2010; 39: 1565
[3] (姚志浩, 董建新, 张麦仓, 郑 磊. 稀有金属材料与工程, 2010; 39: 1565)
[4] Tong J, Vermeulen B. Int J Fatigue, 2003; 25: 413
[5] Semiatin S L, Fagin P N, Glavicic M G. Scr Mater, 2004; 50: 625
[6] Liu X B, Kang B, Chang K M. Mater Sci Eng, 2003; A340: 8
[7] Tin S, Lee P D, Kermanpur A, Rist M, McLean M. Metall Mater Trans, 2005; 36A: 2493
[8] Bertrand C, Cabrera J M, HerreroA, Mateos P, Prado J M. Mater Sci Forum, 1993; 113-115: 39
[9] Łukaszek-Sołek A, Krawczyk J, Chyła P. J Alloys Compd, doi: 10.1016/j.jallcom.2013.12.070
[10] Bramley A N, Mynors D J. Mater Des, 2000; 21: 279
[11] de Jaeger J, Solas D, BaudinT, FandeurO, Schmitt J H, Rey C. In: Huron E S, Reed R C, Hardy M C, Mills M J, Montero R E, Portella P D, Telesman J eds., Superalloys 2012, Pennsylvania: TMS, 2012: 663
[12] Dandre C A, Walsh C A, Evans R W, Reed R C, Roberts S M. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000, Pennsylvania: TMS, 2000: 85
[13] Sun M Y. PhD Dissertation, Graduate School of the Chinese Academy of Sciences, Beijing, 2009
[13] (孙明月. 中国科学院研究生院博士学位论文, 北京, 2009)
[14] Yao Z H, Dong J X, Zhang M C. Acta Metall Sin, 2011; 47: 1581
[14] (姚志浩, 董建新, 张麦仓. 金属学报, 2011; 47: 1581)
[15] Yao Z H, Wang Q Y, Zhang M C, Dong J X. Acta Metall Sin, 2011; 47: 1591
[15] (姚志浩, 王秋雨, 张麦仓, 董建新. 金属学报, 2011; 47: 1591)
[16] Shen G S, Semiatin S L, Shivpuri R. Metall Mater Trans, 1995; 26A: 1795
[17] Zhang H Y, Zhang S H, Li Z X, Cheng M. J Eng Manuf, 2010; 224: 103
[18] Cha D J, Kim D K, Cho J R, Bae W B. Int J Preci Eng Manuf, 2011; 12: 331
[19] Shen G S, Furrer D. J Mater Process Technol, 2000; 98: 189
[20] Shahriari D, Amiri A, Sadeghi M H, Cheraghzadeh M. Int J Mater Form, 2008; 1(Suppl 1): 29
[21] Jeong H S, Cho J R, Park H C. J Mater Process Technol, 2005; 162-163: 504
[22] Ma Q, Lin Z Q, Yu Z Q. Int J Adv Manuf Technol, 2009; 40: 253
[23] China Aeronautical Materials Handbook Editorial Committee. China Aeronautical Materials Handbook. 2nd Ed., Vol.2, Beijing: China Standards Press, 2001: 475
[23] (中国航空材料手册编辑委员会编. 中国航空材料手册(第二版)/第二卷. 北京: 中国标准出版社, 2001: 475)
[1] 张瑞, 刘鹏, 崔传勇, 曲敬龙, 张北江, 杜金辉, 周亦胄, 孙晓峰. 国内航空发动机涡轮盘用铸锻难变形高温合金热加工研究现状与展望[J]. 金属学报, 2021, 57(10): 1215-1228.
[2] 张勇, 李鑫旭, 韦康, 万志鹏, 贾崇林, 王涛, 李钊, 孙宇, 梁红艳. 850 ℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究[J]. 金属学报, 2020, 56(10): 1401-1410.
[3] 张国庆,张义文,郑亮,彭子超. 航空发动机用粉末高温合金及制备技术研究进展[J]. 金属学报, 2019, 55(9): 1133-1144.
[4] 毕中南,秦海龙,董志国,王相平,王鸣,刘永泉,杜金辉,张继. 高温合金盘锻件制备过程残余应力的演化规律及机制[J]. 金属学报, 2019, 55(9): 1160-1174.
[5] 佴启亮,董建新,张麦仓,姚志浩. 多组织因素对GH4738合金裂纹扩展速率的交互影响*[J]. 金属学报, 2016, 52(2): 151-160.
[6] 姚志浩 王秋雨 张麦仓 董建新. GH738高温合金热变形过程显微组织控制与预测 II.组织演化模型验证与应用[J]. 金属学报, 2011, 47(12): 1591-1599.