Please wait a minute...
金属学报  2014, Vol. 50 Issue (7): 811-820    DOI: 10.3724/SP.J.1037.2013.00812
  本期目录 | 过刊浏览 |
超临界CO2/油/水系统中油气管材钢的腐蚀机制*
孙冲1, 孙建波1(), 王勇1, 王世杰2, 刘建新2
1 中国石油大学(华东)机电工程学院, 青岛 266580
2 中石化胜利油田分公司采油工艺研究院, 东营 257000
CORROSION MECHANISM OF OCTG CARBON STEEL IN SUPERCRITICAL CO2/OIL/WATER SYSTEM
SUN Chong1, SUN Jianbo1(), WANG Yong1, WANG Shijie2, LIU Jianxin2
1 College of Mechanical and Electronic Engineering, China University of Petroleum, Qingdao 266580
2 Oil Production Research Institute, Shengli Oilfield of Sinopec, Dongying 257000
引用本文:

孙冲, 孙建波, 王勇, 王世杰, 刘建新. 超临界CO2/油/水系统中油气管材钢的腐蚀机制*[J]. 金属学报, 2014, 50(7): 811-820.
Chong SUN, Jianbo SUN, Yong WANG, Shijie WANG, Jianxin LIU. CORROSION MECHANISM OF OCTG CARBON STEEL IN SUPERCRITICAL CO2/OIL/WATER SYSTEM[J]. Acta Metall Sin, 2014, 50(7): 811-820.

全文: PDF(9636 KB)   HTML
摘要: 

利用高温高压CO2模拟实验及SEM, EDS, XRD等分析技术, 研究了超临界CO2/油/水系统中J55钢的腐蚀速率、腐蚀形态和腐蚀产物膜的结构特征, 建立了不同含水率下的腐蚀模型, 并阐述其腐蚀机制. 结果表明: 含水率低于30%时, 原油浸润整个金属表面, J55钢发生均匀腐蚀, 处于耐蚀状态; 含水率在30%~75%之间时, 腐蚀速率近似线性增长, 原油吸附不均匀性及在腐蚀膜沉积部位水优先润湿导致局部孔蚀; 含水率高于75%以后, 水相浸润整个金属表面, 原油的缓蚀作用被屏蔽, 腐蚀膜局部破坏引发台地腐蚀, 腐蚀速率急剧增加. 含水率达到100%时, 超临界CO2溶于水形成的强腐蚀环境导致整个金属表面的均匀腐蚀. 原油能够削弱超临界腐蚀介质对腐蚀膜的溶解, 改变腐蚀膜晶粒尺寸、堆积形态及化学组成, 提高腐蚀膜的保护性能.

关键词 CO2腐蚀超临界CO2原油含水率J55钢    
Abstract

The supercritical CO2 corrosion problems of oil country tubular goods (OCTG) become increasingly prominent along with the application of CO2 flooding enhanced oil recovery (EOR) technique and the exploitation of deep oil wells under high temperature and high pressure. Actually, OCTG steel often suffers from multiphase fluid corrosion of crude oil, water and supercritical CO2 at different stages of oil and gas production. However, studies about CO2 corrosion of carbon steel used for oil and gas production generally are carried out considering only the aqueous phase without proper consideration of the oil phase that may be present. The crude oil in crude oil/water production environments is a key factor affected the corrosion behavior of carbon steel. Corrosion rate and corrosion type of J55 steel were investigated under the conditions of different oil/water ratios saturated with supercritical CO2. SEM, EDS and XRD were employed to analyze the morphology and characteristic of corrosion scale on the steel. The corrosion models were developed to understand the corrosion mechanism with consideration of a variation of oil/water ratio in reality. The results show that uniform corrosion occurs along with the lower corrosion rate due to the protection of crude oil when the water cut of crude oil is within the range, i.e., 0~30% and the water-in-oil fluid is formed. But the local corrosion rate of the steel increases rapidly due to the inhomogeneous adsorption of crude oil with the fluid changing from water-in-oil to oil-in-water emulsion when the water cut is between 30% and 75%. The corrosion products deposited on the steel surface change the wettability of oil and water phase, therefore, water phase can preferentially wet the localized deposited scale, leading to the development of pitting corrosion under the scale. However, when the water cut is higher than 75% and the oil-in-water fluid is formed, water phase infiltrates the metal surface that blocks the corrosion inhibition of crude oil for the steel, hence, the corrosion rate increases dramatically. The localized failure of corrosion scale due to scouring action of the fluid and the dissolution of aggressive medium leads to mesa corrosion on the steel. When the water cut is 100%, serious uniform corrosion occurs as a result of the strong corrosiveness of supercritical CO2 dissolved in the water phase. Furthermore, crude oil can weaken the dissolution of corrosion scale in the supercritical corrosive medium, which modifies the grain size, morphology and chemical composition of corrosion scale and improves the protection performance of the scale.

Key wordsCO2 corrosion    supercritical CO2    crude oil    water cut    J55 steel
收稿日期: 2013-12-13     
ZTFLH:  TG172.9  
基金资助:* 十二五国家科技支撑计划项目2012BAC24B03, 中央高校基本科研业务费专项资金项目14CX05020A以及山东省自然科学基金项目ZR2010EM034资助
作者简介: null

孙冲, 男, 1988年生, 博士生

图1  
图2  
图3  
图4  
图5  
图6  
图7  
图8  
图9  
图10  
图11  
图12  
[1] Kermani M B, Morshed A. Corrosion, 2003; 59: 659
[2] Zhang X Y,Di C,Lei L C. Corrosion and Control of CO2. Beijing: Chemical Industry Press, 2000: 15
[2] (张学元,邸 超,雷良才. 二氧化碳腐蚀与控制. 北京: 化学工业出版社, 2000: 15)
[3] Efird K D, Jasinski R J. Corrosion, 1989; 45: 165
[4] Castillo M, Rincón H, Duplat S, Vera J, Bacón E. Corrosion 2000, Houston: NACE, 2000: 00005
[5] Méndez C, Duplat S, Hernández S, Vera J. Corrosion 2001, Houston: NACE, 2001: 01030
[6] De Waard C, Smith L M, Craig B D. Corrosion 2003, Houston: NACE, 2003: 03629
[7] Efird K D, Smith J L, Blevins S E, Davis N D. Corrosion 2004, Houston: NACE, 2004: 04366
[8] Craig B D. Mater Perform, 1996; 8: 61
[9] Hernandez S E, Duplat S, Vera J R, Baron E. Corrosion 2002, Houston: NACE, 2002: 02293
[10] Ayello F, Robbins W, Richter S, Nesic S. Corrosion 2011, Houston: NACE, 2011: 11060
[11] Wei A J, Huo F Y, Wang Q, Dang L, Huang J Z. Corros Prot, 2009; 30: 383
[11] (魏爱军, 霍富永, 王 茜, 党 丽, 黄建忠. 腐蚀与防护, 2009; 30: 383)
[12] Rincon H, Hernandez S, Salazar J, Case R, Vera J. Corrosion 99, Houston: NACE, 1999: 602
[13] Wu S L, Cui Z D, Li C F, Zhu S L, Yang X J. J Chin Soc Corros Prot, 2003; 23: 340
[13] (吴水林, 崔振铎, 李春富, 朱胜利, 杨贤金. 中国腐蚀与防护学报, 2003; 23: 340)
[14] Cui Z D, Wu S L, Zhu S L, Yang X J. Appl Surf Sci, 2006; 252: 2368
[15] Sun J B, Liu W, Chang W, Zhang Z H, Li Z T, Yu T, Lu M X. Acta Metall Sin, 2009; 45: 84
[15] (孙建波, 柳 伟, 常 炜, 张忠铧, 李忠涛, 于 湉, 路民旭. 金属学报, 2009; 45: 84)
[16] Cui Z D, Wu S L, Li C F, Zhu S L, Yang X J. Mater Lett, 2004; 58: 1035
[17] King M B, Mubarak A, Kim J D. J Supercrit Fluids, 1992; 5: 296
[18] Choi Y S, Nesic S. Corrosion 2009, Houston: NACE, 2009: 09256
[19] Zhang Y C, Gao K W, Schmitt G. Corrosion 2011, Houston: NACE, 2011: 11378
[20] Dugstad A. Corrosion 2006, Houston: NACE, 2006: 06111
[21] Chen C F, Lu M X, Zhao G X, Bai Z Q, Yan M L, Yang Y Q. Acta Metall Sin, 2002; 38: 411
[21] (陈长风, 路民旭, 赵国仙, 白真权, 严密林, 杨延清. 金属学报, 2002; 38: 411)
[22] Sun J B, Zhang G A, Liu W, Lu M X. Corros Sci, 2012; 57: 131
[23] Cheng C F, Zhao G X, Lu M X, Yang Y Q, Li H L. J Chin Soc Corros Prot, 2002; 22: 143
[23] (陈长风, 赵国仙, 路民旭, 杨延清, 李鹤林. 中国腐蚀与防护学报, 2002; 22: 143)
[24] Lotz U, Van Bodegom L, Ouwehand C. Corrosion, 1991; 47: 635
[25] Zhao G X. Physical Chemistry of Surfactant. Beijing: Peking University Press, 1984: 387
[25] (赵国玺. 表面活性剂物理化学. 北京: 北京大学出版社, 1984: 387)
[26] Carew J A, Al-Sayegh A, Al-Hashem A. Corrosion 2000, Houston: NACE, 2000: 00061
[27] Nesic S. Corros Sci, 2007; 49: 4308
[28] Chen C F, Lu M X, Chang W, Zhao G X, Bai Z Q. Corrosion 2003, Houston: NACE, 2003: 03342
[1] 邹佳男, 庞晓露, 高克玮. 低合金钢X70和3Cr在超临界CO2环境中的缝隙腐蚀[J]. 金属学报, 2018, 54(4): 537-546.
[2] 魏亮, 庞晓露, 高克玮. X65钢在含超临界CO2的NaCl溶液中腐蚀机制的讨论*[J]. 金属学报, 2015, 51(6): 701-712.
[3] 郭少强 许立宁 常炜 密雅荣 路民旭. 3Cr管线钢CO2腐蚀实验研究[J]. 金属学报, 2011, 47(8): 1067-1074.
[4] 孙建波 柳伟 常炜 张忠铧 李忠涛 于湉 路民旭. 低铬X65管线钢CO2腐蚀产物膜的特征及形成机制[J]. 金属学报, 2009, 45(1): 84-90.
[5] 孙建波; 柳伟; 杨丽颖; 杨建炜; 路民旭 . 高矿化度介质中J55钢的CO2腐蚀电化学行为[J]. 金属学报, 2008, 44(8): 991-994 .