Please wait a minute...
金属学报  2014, Vol. 50 Issue (6): 641-651    DOI: 10.3724/SP.J.1037.2013.00567
  本期目录 | 过刊浏览 |
合金凝固过程元胞自动机模型及模拟方法的发展*
赵九洲1(), 李璐1, 张显飞2
1 中国科学院金属研究所, 沈阳110016
2 沈阳理工大学材料科学与工程学院, 沈阳110159
DEVELOPMENT OF CELLULAR AUTOMATON MODELS AND SIMULATION METHODS FOR SOLIDIFICATION OF ALLOYS
ZHAO Jiuzhou1(), LI Lu1, ZHANG Xianfei2
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2 School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159
引用本文:

赵九洲, 李璐, 张显飞. 合金凝固过程元胞自动机模型及模拟方法的发展*[J]. 金属学报, 2014, 50(6): 641-651.
Jiuzhou ZHAO, Lu LI, Xianfei ZHANG. DEVELOPMENT OF CELLULAR AUTOMATON MODELS AND SIMULATION METHODS FOR SOLIDIFICATION OF ALLOYS[J]. Acta Metall Sin, 2014, 50(6): 641-651.

全文: PDF(3006 KB)   HTML
摘要: 

元胞自动机(CA)是一种高效且物理意义明确的模拟方法, 能够较准确地模拟合金的凝固组织演变过程. 本文简述了合金凝固过程CA模拟方法的基本原理, 综述了合金凝固组织演变CA模型的发展历程, 分析了现存的CA模型的特点, 展望了合金凝固CA模型的未来发展方向.

关键词 合金凝固组织枝晶数值模拟元胞自动机    
Abstract

Dendritic structure is the most frequently observed solidification microstructure of alloys. It has a dominant effect on the mechanical properties of alloys. The formation of the dendritic microstructure has attracted extensive attentions. It has been demonstrated that numerical simulation is a powerful tool for studying the microstructure formation during the solidification of alloys. Various models, such as the front-tracking (FT) model, the phase-field (PF) model and the cellular automaton (CA) model have been proposed to simulate the formation process of dendrite. Compared with other methods, CA is an effective numerical simulation method with high calculation efficiency and clear physical meaning. It is more suitable to be applied to simulate the formation kinetics of the dendritic microstructure of alloys. It has been widely applied in the investigation of the solidification of alloys. This paper makes a detailed introduction to the common process of CA modeling and simulation, the constructing method of CA model and the calculation method for some key parameters such as nucleation rate of nuclei, growth velocity of dendrite, etc. A review of the development of the CA models for the solidification of alloys is carried out. The features and applications of the existing CA models are critically assessed. The applications of the CA models in the investigations of the practical solidification process are summarized. The problems to be solved and the future development of CA models are also pointed out.

Key wordsalloy    solidification microstructure    dendrite    numerical simulation    cellular automaton
收稿日期: 2013-09-09     
ZTFLH:  TG111.4  
基金资助:*国家自然科学基金项目51071159, 51271185和51031003资助
作者简介: null

作者简介: 赵九洲, 男, 1962年生, 研究员

图1  二维正方形CA体系常用邻居构型
图2  三维立方CA体系中的邻居构型[8]
图3  型壁和熔体内的非均匀形核[13]
图4  固液界面生长方向示意图
图5  2D 正方算法示意图[13]
图6  固液界面元胞固相分数计算示意图
图7  固相分数增长算法示意图
图8  Al-11.6%Cu-0.85%Mg合金定向凝固组织演变过程[59]
图9  定向凝固Al-11.6Cu-0.85Mg合金枝晶间距[59]
图10  应用不同溶质扩散系数处理方法时计算的枝晶尖端生长速度随时间的变化[59]
[1] Wheeler A A, Murray B T, Schaefer R J. Physica, 1993; 66D: 243
[2] Warren J A, Boettinger W J. Acta Metall Mater, 1995; 43: 689
[3] Zhang R J, Jing T, Jie W Q, Liu B C. Acta Mater, 2006; 54: 2235
[4] McCarthy J F, Blake N W. Acta Mater, 1996; 44: 2093
[5] Juric D, Tryggvason G. J Comput Phys, 1996; 123: 127
[6] Zhao P, Venere M, Heinrich J C, Porier D R. J Comput Phys, 2003; 183: 434
[7] Liu Y, Xu Q Y, Liu B C. Tsinghua Sci Technol, 2006; 5: 495
[8] Jiang H X, Zhao J Z. Acta Metall Sin, 2011; 47: 1099
[8] (江鸿翔,赵九洲. 金属学报, 2011; 47: 1099)
[9] Turnbull D J. J Chem Phys, 1952; 20: 411
[10] Hunt J D. Mater Sci Eng, 1984; 65: 75
[11] Stefanescu D M, Upadhya G, Bandyopadhyay D. Metall Trans, 1990; 21A: 997
[12] Oldfield W. Trans ASM, 1966; 59: 945
[13] Rappaz M, Gandin C A. Acta Metall Mater, 1993; 41: 345
[14] Yao X, Dargusch M S, Dahle A K, Davidson C J, Stjohn D H. J Mater Res, 2008; 23: 2312
[15] Cho S H, Okanem T, Umeda T. Sci Technol Adv Mater, 2002; 2: 241
[16] Dong H B, Lee P D. Acta Metall, 2005; 53: 659
[17] Kurz W, Giovanola B, Trivedi R. Acta Metall, 1986; 34: 823
[18] Zhu M F, Kim J M, Hong C P. ISIJ Int, 2001; 41: 992
[19] Sekerka R F. J Cryst Growth, 2004; 264: 530
[20] Beltran-Sanchez L, Stefanescu D M. Metall Mater Trans, 2004; 35A: 2471
[21] Pan S Y, Zhu M F. Acta Metall, 2010; 58: 340
[22] Gandin C A, Rappaz M. Acta Metall Mater, 1994; 42: 2233
[23] Rappaz M, Gandin C A, Desbiolles J L, Thevoz P. Metall Mater Trans, 1996; 27A: 695
[24] Zhu M F, Lee S Y, Hong C P. Phys Rev, 2004; 69E: 061610
[25] Yin H, Felicelli S D, Wang L. Acta Mater, 2011; 59: 3124
[26] Gandin C A, Rappaz M. Acta Mater, 1997; 45: 2187
[27] Dong H B, Lee P D. Acta Mater, 2005; 53: 659
[28] Brown S G R, Spittle J A, Williams T. Acta Metall Mater, 1994; 42: 2893
[29] Spittle J A, Brown S G R. J Mater Sci, 1995; 30: 3989
[30] Gandin C A, Rappaz M, Tintillier R. Metall Mater Trans, 1993; 24: 467
[31] Gandin C A, Desbiolles J L, Rappaz M, Thevoz P. Metall Mater Trans, 1999; 30A: 3153
[32] Dilthey U, Pavlik V, Reichel T. In: Cerjak H, Bhadeshia H K D H eds., Mathematical Modeling of Weld Phenomena 3. London: The Institute of Materials, 1997: 85
[33] Sasikumar R, Sreenivasan R. Acta Metall Mater, 1994; 42: 2381
[34] Kothe D B, Mjolsness R C, Torrey M D. Ripple: A Computer Program for Incompressible Flows with Free Surface. Los Alamos: Los Alamos National Lab, 1991: 1
[35] Beltran-Sanchez L, Stefanescu D M. Metall Mater Trans, 2003; 34A: 367
[36] Nastac L. Acta Mater, l999; 47: 4253
[37] Beltran-Sanchez L, Stefanescu D M. Metall Mater Trans, 2004; 35A: 2471
[38] Zhu M F, Hong C P. ISIJ Int, 2001; 41: 436
[39] Zhu M F, Hong C P. Phys Rev, 2002; 66: 155428
[40] Zhu M F, Hong C P. ISIJ Int, 2002; 42: 520
[41] Zhu M F, Dai T, Li C Y, Hong C P. Sci China E, 2005; 35E: 67
[41] (朱鸣芳, 戴 挺, 李成允, 洪俊杓. 中国科学E, 2005; 35: 673) url:
[42] Zhu M F, Stefanescu D M. Acta Mater, 2007; 55: 1741
[43] Li Q, Li D Z, Qian B N. Acta Metall Sin, 2004; 40: 634
[43] (李 强, 李殿中, 钱百年. 金属学报, 2004; 40: 634)
[44] Li Q, Li D Z, Qian B N. Acta Metall Sin, 2004; 40: 1215
[44] (李 强, 李殿中, 钱百年. 金属学报, 2004; 40: 1215)
[45] Wei L, Lin X, Wang M, Huang W D. Acta Phys Sin, 2012; 61: 098104
[45] (魏 雷, 林 鑫, 王 猛, 黄卫东. 物理学报, 2012; 61: 098104)
[46] Lin X, Wei L, Shan B W, Huang W D. In: Howard J ed., Proc 5th Decennial International Conference on Solidification Processing, Sheffield: University of Sheffield, 2007: 53
[47] Lin X, Wei L, Wang M, Huang W D. Mater Sci Forum, 2010: 654-656: 1528
[48] Fu Z N, Xu Q Y, Xiong S M. Chin J Nonferrous Met, 2007; 17: 1567
[48] (付振南, 许庆彦, 熊守美. 中国有色金属学报, 2007; 17: 1567)
[49] Marek M. Physica, 2013; 253D: 73
[50] Li D Z, Su S F, Xu X H, Wang J Q, Chen J Z, Liu Y M. Foundary, 1997; (8): 1
[50] (李殿中, 苏仕方, 徐雪华, 王君卿, 陈家芝, 刘一鸣. 铸造, 1997; (8): 1)
[51] Li D Z, Du Q, Hu Z Y, Li Y Y. Acta Metall Sin, 1999; 39: 1201
[51] (李殿中, 杜 强, 胡志勇, 李依依. 金属学报, 1999; 39: 1201)
[52] Kang X H, Du Q, Li D Z. Acta Metall Sin, 2004; 40: 452
[52] (康秀红, 杜强, 李殿中. 金属学报, 2004; 40: 452)
[53] Yin H, Felicelli S D. Acta Mater, 2010; 58: 1455
[54] Shi Y F, Xu Q Y, Gong M, Liu B C. Acta Metall Sin, 2011; 47: 620
[54] (石玉峰, 许庆彦, 龚 铭, 柳百成. 金属学报, 2011; 47: 620)
[55] Zaeem M A, Yin H, Felicelli S D. J Mater Sci Technol, 2012; 28: 137
[56] Zaeem M A, Yin H, Felicelli S D. Appl Math Modell, 2013; 37: 3495
[57] Jarvis D J, Brown S G R, Spittle J A. Mater Sci Technol, 2000; 16: 1420
[58] Zhu M F, Cao W, Chen S L, Hong C P, Chang Y A. J Phase Equilib Diffus, 2007; 28: 130
[59] Zhang X F. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2012
[59] (张显飞. 中国科学院金属研究所博士学位论文, 沈阳, 2012)
[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[7] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[8] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[9] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[10] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[11] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[12] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[13] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[14] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[15] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.