Please wait a minute...
金属学报  2012, Vol. 48 Issue (8): 922-928    DOI: 10.3724/SP.J.1037.2012.00169
  论文 本期目录 | 过刊浏览 |
表面滚压对LZ50车轴钢疲劳短裂纹行为的影响
杨冰, 赵永翔
西南交通大学牵引动力国家重点实验室, 成都 610031
INFLUENCE OF SURFACE ROLLING ON SHORT FATIGUE CRACK BEHAVIOR FOR LZ50 AXLE STEEL
YANG Bing, ZHAO Yongxiang
西南交通大学牵引动力国家重点实验室, 成都 610031
引用本文:

杨冰 赵永翔. 表面滚压对LZ50车轴钢疲劳短裂纹行为的影响[J]. 金属学报, 2012, 48(8): 922-928.
. INFLUENCE OF SURFACE ROLLING ON SHORT FATIGUE CRACK BEHAVIOR FOR LZ50 AXLE STEEL[J]. Acta Metall Sin, 2012, 48(8): 922-928.

全文: PDF(2429 KB)  
摘要: 完成了6根表面经滚压处理的漏斗形圆棒试样疲劳短裂纹复型实验, 结果表明其短裂纹行为表现出明显的微观结构短裂纹(MSC)和物理短裂纹(PSC) 2阶段特征. 在MSC阶段, 由于不同微观结构障碍的阻碍, 主导短裂纹出现2次较明显的扩展减速, 进入PSC阶段后, 随着主导短裂纹尺度的增长, 该现象不再显著. 与表面未经滚压的试样相比, 在给定主导短裂纹尺度条件下, 滚压试样的裂纹扩展速率低得多, 这种差异在MSC阶段可达1个数量级. 滚压试样平均疲劳寿命达到未滚压试样的6.4倍. 表面滚压处理有效抑制了微裂纹的形核与合并, 改善了局部微观结构条件, 并推迟了MSC与PSC过渡阶段的到来,提高了材料的抗疲劳性能. 对主导短裂纹尺度、疲劳寿命分数和有效短裂纹密度3种特征参量进行分析, 确定了其良好假设分布和统计演化规律.
关键词 疲劳 短裂纹 表面滚压 扩展率 LZ50车轴钢    
Abstract:Crack initiation, coalescence and propagation normally occupy more than 70% the fatigue life of most engineering structure in the whole fatigue damage process. Investigation on the influence of final machining methods, such as surface rolling, on short fatigue crack behavior for LZ50 axle is beneficial to the manufacture and maintenance of corresponding railway axles. After rolling, the surface hardness increased from 201.68 HV0.1 to 222.90 HV0.1. Much higher residual compressive stress was also engendered in surface and sub–surface by this machining method. Totally six smooth hourglass shaped specimens with surface rolling were tested by a replica technique. The characteristic two–stages behavior, that is, the micro–structural short crack (MSC) stage and the physical short crack (PSC) stage, during crack initiation and propagation was revealed. In MSC stage, the growth rate of dominant short crack for all specimens decelerated twice clearly due to different microstructural barriers. This behavior was related to the restraint of ferrite grain boundary firstly and then to the constraint of pearlite banded structure. While in PSC stage, the decelerating trend was no longer obvious with the increasing dominant crack size. With a given dominant crack size, the crack growth rates of surface rolled specimens were much slower than those of specimens without surface rolling. This difference could reach 1 order of magnitude in MSC stage. Meanwhile, the average fatigue life of the former was about 5.4 times longer than that of the latter. The effective short fatigue crack density of surface rolled specimens increased in MSC stage, then attained the peak value at the turning point between MSC stage and PSC stage, and finally decreased in PSC stage. At the same time, surface rolled specimens owned much less crack density than specimens without surface rolling during the whole fatigue process. Surface rolling can restrain the nucleation and connection of micro–cracks, improve the local microstructure conditions, push back the transition point between MSC and PSC stages, and thus improve the anti–fatigue performance of material. Finally, the reasonable assumed distributions for three kinds of characteristic parameters, i.e., dominant short crack size, fatigue life fraction and effective short crack density, were determined. In general, the dispersion of above data was high in initial stage and relatively low in later stage during crack initiation and propagation process.
Key wordsfatigue    short crack    surface rolling    growth rate    LZ50 axle steel
收稿日期: 2012-04-01     
ZTFLH: 

TG111,TG115

 
基金资助:

国家自然科学基金项目 50575189和50821063, 中央高校基本科研业务费专项资金项目 SWJTU11CX075, 西南交通大学牵引动力国家重点实验室开放基金项目 2011TPL_T02资助

作者简介: 杨冰, 男, 1979年生, 副研究员, 博士
[1] Liu E Z, Zheng Z, Tong J, Ning L K, Guan X R. Acta Metall Sin, 2010; 46: 708

(刘恩泽, 郑 志, 佟健, 宁礼奎, 管秀荣. 金属学报, 2010; 46: 708)

[2] Hu Y H, Zhang Z, Zhong Q P, Han B C. J Mech Strength, 2009; 31: 979

(胡燕慧, 张 峥, 钟群鹏, 韩邦成. 机械强度, 2009; 31: 979)

[3] Suresh S, translated by Wang Z G. Fatigue of Materials. 2nd Ed, Beijing: National Defense Industry Press, 1999: 387

(Suresh S著, 王中光译. 材料的疲劳. 第二版, 北京: 国防工业出版社, 1999: 387)

[4] Pearson S. Eng Fract Mech, 1975; 7: 235

[5] Maluf O, Milan M T, Spinelli D. J Mater Eng Perform, 2004; 13: 195

[6] Ueji R, Tsuji N, Minamino Y. Acta Mater, 2002; 50: 4177

[7] Mara N A, Sergueeva A V, Mara T D. Mater Sci Eng, 2007; A463: 238

[8] Jia G W, Hua L, Mao H J. J Mater Process Technol, 2007; 187–188: 562

[9] Ma B, Tieu A K, Lu C, Jiang Z. J Mater Process Technol, 2002; 125–126: 657

[10] Yang B, Zhao Y X. Adv Mater Res, 2012; 463: 85

[11] Zhao Y X, Gao Q, Wang J N. Acta Metall Sin, 2000; 36: 931

(赵永翔, 高庆, 王金诺. 金属学报, 2000; 36: 931)

[12] Zhao Y X, Gao Q, Wang J N. Acta Metall Sin, 2000; 36: 937

(赵永翔, 高庆, 王金诺. 金属学报, 2000; 36: 937)

[13] Zhao Y X, Yang B, Gao Q. Nucl Power Eng, 2003; 24: 127

(赵永翔, 杨冰, 高庆. 核动力工程, 2003; 24: 127)

[14] Zhao Y X, Yang B, Gao Q. Nucl Power Eng, 2005; 26:584

(赵永翔, 杨冰, 高庆. 核动力工程, 2005; 26: 584)

[15] Zhao Y X. PhD Thesis, Southwest Jiaotong University,Chengdu, 1998

(赵永翔. 西南交通大学博士学位论文, 成都, 1998)

[16] Zhao Y X, Gao Q, Wang J N. Fatigue Fract Eng Mater Struct, 1999; 22: 459

[17] Miller K J. Fatigue Fract Eng Mater Struct, 1987; 10: 75

[18] Miller K J. Fatigue Fract Eng Mater Struct, 1987; 10: 93

[19] Obrtl´?k K, Pol´ak J, H´ajek M, Vaˇsek A. Int J Fatigue, 1997; 19: 471

[20] Luo J, Bowen P. Int J Fatigue, 2004; 26: 113

[21] Ortiz J, Cisilino A P, Otegui J L. Fatigue Fract Eng Mater Struct, 2001; 24: 591

[22] Ding C F, Liu J Z, Wu X R. J Aeronaut Mater, 2005; 25(6): 11

(丁传富, 刘建中, 吴学仁. 航空材料学报, 2005; 25(6): 11)

[23] Zhao Y X, Gao Q, Wang J N. Fatigue Fract Eng Mater Struct, 1999; 22: 469

[24] Zhao Y X. J Mater Sci Technol, 2003; 19: 129

[25] Yang B, Zhao Y X. Int J Fatigue, 2012; 35: 71

[26] Yang B, Zhao Y X. Key Eng Mater, 2011; 474: 979

[27] Yang B, Zhao Y X. Adv Mater Res, 2010; 118: 75

[28] Zhao Y X, Sun Y F, Gao Q. J Mech Strength, 2001; 23: 102

(赵永翔, 孙亚芳, 高庆. 机械强度, 2001; 23: 102)
[1] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[2] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[4] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[6] 张滨, 田达, 宋竹满, 张广平. 深潜器耐压壳用钛合金保载疲劳服役可靠性研究进展[J]. 金属学报, 2023, 59(6): 713-726.
[7] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[8] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[9] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[10] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[11] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[12] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[13] 杨秦政, 杨晓光, 黄渭清, 石多奇. 粉末高温合金FGH4096的疲劳小裂纹扩展行为[J]. 金属学报, 2022, 58(5): 683-694.
[14] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[15] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.