Please wait a minute...
金属学报  2011, Vol. 47 Issue (8): 1094-1098    DOI: 10.3724/SP.J.1037.2010.00623
  论文 本期目录 | 过刊浏览 |
微合金钢中第二相临界转变尺寸的研究
刘文庆,朱晓勇,钟柳明,王晓姣, 刘庆冬
上海大学微结构研究重点实验室, 上海 200444
STUDY ON CRITICAL TRANSITION RADIUS OF SECOND PHASE IN MICRO–ALLOYED STEEL
LIU Wenqing, ZHU Xiaoyong, ZHONG Liuming, WANG Xiaojiao, LIU Qingdong
Key Laboratory for Advanced Micro–Analysis, Shanghai University, Shanghai 200444
引用本文:

刘文庆 朱晓勇 钟柳明 王晓姣 刘庆冬. 微合金钢中第二相临界转变尺寸的研究[J]. 金属学报, 2011, 47(8): 1094-1098.
, , , , . STUDY ON CRITICAL TRANSITION RADIUS OF SECOND PHASE IN MICRO–ALLOYED STEEL[J]. Acta Metall Sin, 2011, 47(8): 1094-1098.

全文: PDF(705 KB)  
摘要: 将V-Nb-Mo微合金钢在1200℃固溶处理0.5 h后淬火, 然后在不同的温度(500-650℃)回火4 h, 或在650℃回火不同时间, 用显微硬度判定等温回火和等时回火时析出碳化物强化机制的转变点, 用三维原子探针(3DAP)表征碳化物的析出特征, 并测量其等效半径rp.根据第二相与位错交互作用的强化理论, 共格应变强化主导切过机制,计算了位错切过向绕过机制转变时第二相的尺寸. 结果表明, 3DAP测量和强化理论计算得到的第二相的临界转变半径十分吻合, 约为1 nm, 表明用共格应变强化切过机制可以很好地预测析出强化作用最显著时第二相的尺寸.
关键词 三维原子探针(3DAP) 微合金钢 临界转换半径 第二相    
Abstract:Precipitation strengthening can occur by means of two mechanisms, depending on the size. First, the shearing mechanism is active for small precipitates and the strengthening increases with the increase in the precipitate size. Second, the Orowan bypass process, where dislocation loops around precipitates is active for larger precipitates and the strengthening decreases with increase in the precipitate size. Therefore, there must exists a critical transition size of precipitates, in which the strengthening reaches the maximum. V–Nb–Mo micro–alloyed steels were isochronally tempered for 4 h at different temperatures and isothermally tempered for different times at 650 ℃ after solution treatment at 1200 ℃ for 0.5 h. The tempering conditions where the transition of precipitate strengthening mechanism occurred could be ascertained by the isochronal and isothermal hardness curves. The critical transition size of precipitates was determined to be about 1.0 nm by three dimensional atom probe (3DAP). Based on the precipitation strengthening theory and shearing mechanism dominated by coherency strengthening, the critical transition size of precipitates was calculated to be about 1.0 nm, which was in good agreement with the value measured by 3DAP. It indicates that the size of second phase can be well predicted by the precipitation strengthening theory when the micro–alloy steel reaches the maximum precipitation strengthening effect.
Key wordsthree dimensional atom probe (3DAP)    micro–alloyed steel    critical transition radius    second phase
收稿日期: 2010-11-17     
ZTFLH: 

TG 142.1

 
基金资助:

国家自然科学基金重点项目50931003和上海市重点学科建设项目S30107资助

作者简介: 刘文庆, 男, 1968年生, 研究员
[1] Yong Q L. Secondary Phase in Steels. Beijing: Metallurgical Industry Press, 2006: 16

(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 16)

[2] Cerezo A, Clifton P, Mark H, Galtrey J, Humphreys C J, Kelly T F, Larson D J, Perez S L, Marquis E A, Oliver R A, Sha G, Thompson K, Zandbergen M, Alvis R L. Mater Today, 2007; 10: 36

[3] Liu Q D, Liu W Q, Wang Z M, Zhou B X. Acta Metall Sin, 2008; 44: 786

(刘庆冬, 刘文庆, 王泽民, 周邦新. 金属学报, 2008; 44: 786)

[4] Liu Q D, Chu Y L, Wang Z M, Liu W Q, Zhou B X. Acta Metall Sin, 2008; 44: 1281

(刘庆冬, 褚于良, 王泽民, 刘文庆, 周邦新. 金属学报, 2008: 44: 1281)

[5] Liu Q D, Liu W Q, Wang Z M, Zhou B X. Acta Metall Sin, 2009; 45: 1281

(刘庆冬, 刘文庆, 王泽民, 周邦新. 金属学报, 2009: 45: 1281)

[6] Liu Q D,Peng J C, Liu W Q, Zhou B X. Acta Metall Sin, 2009; 45: 1288

(刘庆冬, 彭剑超, 刘文庆, 周邦新. 金属学报, 2009; 45: 1288)

[7] Liu Q D,Chu Y L, Wang Z M, Liu W Q, Zhou B X. Acta Metall Sin, 2008; 44: 1297

(刘庆冬, 褚于良, 王泽民, 刘文庆, 周邦新. 金属学报, 2008: 44: 1297)

[8] Pereloma E V, Timokhina I B, Russell K F, Miller M K. Scr Mater, 2006; 54: 471

[9] Miller M K. Atom Probe Tomography: Analysis at the Atomic Level. New York: Plenum Press, 2000: 170

[10] Ardell A. Metall Trans, 1985; 16A: 2131

[11] Danoix F, B´emont E, Maugis P, Blavette D. Adv Eng Mater, 2006; 8: 1202
[1] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[2] 唐帅, 蓝慧芳, 段磊, 金剑锋, 李建平, 刘振宇, 王国栋. 铁素体区等温过程中Ti-Mo-Cu微合金钢中的共析出行为[J]. 金属学报, 2022, 58(3): 355-364.
[3] 朱雯婷, 崔君军, 陈振业, 冯阳, 赵阳, 陈礼清. 690 MPa级高强韧低碳微合金建筑结构钢设计及性能[J]. 金属学报, 2021, 57(3): 340-352.
[4] 武华健, 程仁山, 李景仁, 谢东升, 宋锴, 潘虎成, 秦高梧. Al含量对Mg-Sn-Ca合金微观组织与力学性能的影响[J]. 金属学报, 2020, 56(10): 1423-1432.
[5] 曾荣昌, 崔蓝月, 柯伟. 医用镁合金:成分、组织及腐蚀[J]. 金属学报, 2018, 54(9): 1215-1235.
[6] 刘金辉, 宋影伟, 单大勇, 韩恩厚. 铸态和锻造态Mg-5Y-7Gd-1Nd-0.5Zr合金腐蚀行为对比研究[J]. 金属学报, 2018, 54(8): 1141-1149.
[7] 王光东, 田妮, 何长树, 赵刚, 左良. DC铸造Al-12Si-0.65Mg-xMn合金中第二相的形成[J]. 金属学报, 2018, 54(7): 1059-1067.
[8] 王慧远, 张行, 徐新宇, 查敏, 王珵, 马品奎, 管志平. 超塑性轻合金组织稳定性的研究进展及展望[J]. 金属学报, 2018, 54(11): 1618-1624.
[9] 李晓林, 崔阳, 肖宝亮, 张大伟, 金钊, 程政. V-N微合金钢在线快速感应回火工艺中V(C, N)析出强化机制[J]. 金属学报, 2018, 54(10): 1368-1376.
[10] 郭靖,郭汉杰,方克明,段生朝,石骁,杨文晟. 钢中第二相粒子形貌预报理论和检测方法[J]. 金属学报, 2017, 53(7): 789-796.
[11] 何仙灵,杨庚蔚,毛新平,余驰斌,达传李,甘晓龙. Nb对Ti-Mo微合金钢连续冷却相变规律及组织性能的影响[J]. 金属学报, 2017, 53(6): 648-656.
[12] 杨永,王昭东,李天瑞,贾涛,李小琳,王国栋. 一种第二相析出-温度-时间曲线计算模型的建立[J]. 金属学报, 2017, 53(1): 123-128.
[13] 王建国,刘东,杨艳慧. GH4169合金非均匀组织在加热过程中的演化机理*[J]. 金属学报, 2016, 52(6): 707-716.
[14] 王艳秋,吴昆,王福会. 第二相对镁基材料微弧氧化过程的影响机制*[J]. 金属学报, 2016, 52(6): 689-697.
[15] 尹炎祺,伍翠兰,谢盼,朱恺,田松栗,韩梅,陈江华. 冷轧及退火制备的超细晶粒双相Mn12Ni2MoTi(Al)钢*[J]. 金属学报, 2016, 52(12): 1527-1535.