Please wait a minute...
金属学报  2010, Vol. 46 Issue (12): 1522-1528    DOI: 10.3724/SP.J.1037.2010.00258
  论文 本期目录 | 过刊浏览 |
Al管表面有机杂化膜的制备及性能表征
梁永煌1,2,满瑞林1,2
1.中南大学化学化工学院, 长沙 410083
2.中南大学有色金属资源化学教育部重点实验室, 长沙 410083
PREPARATION AND CHARACTERIZATION OF ORGANIC HYBRID FILMS ON THE SURFACE OF Al TUBES
LIANG Yonghuang 1,2, MAN Ruilin 1,2
1. School of Chemistry and Chemical Engineering, Central South University, Changsha 410083
2. Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha 410083
引用本文:

梁永煌 满瑞林. Al管表面有机杂化膜的制备及性能表征[J]. 金属学报, 2010, 46(12): 1522-1528.
, . PREPARATION AND CHARACTERIZATION OF ORGANIC HYBRID FILMS ON THE SURFACE OF Al TUBES[J]. Acta Metall Sin, 2010, 46(12): 1522-1528.

全文: PDF(1661 KB)  
摘要: 通过化学浸渍在Al管表面钝化生成一层致密疏水的有机杂化膜. 硫酸铜点滴实验、析氢实验和铜盐加速乙酸盐雾试验都表明, 杂化膜显著提高了Al管的耐腐蚀性能,耐蚀效果超过了铬酸盐钝化膜. 电化学Tafel极化曲线和交流阻抗谱(EIS)测定表明, 杂化膜使Al的自腐蚀电位正移, 阻抗值增大, 自腐蚀电流密度降低, 有效降低了Al的腐蚀速率. 附着力及弯折性能实验结果表明, 杂化膜具有良好的附着力和耐弯折性能. SEM和AFM对杂化膜表面形貌分析显示, 杂化膜表面均匀、致密和平整, 膜层由大量无定形的固体颗粒沉积而成, 覆盖度高. EDS检测发现, 杂化膜主要包含Al, C, O, Si和P等元素. 成膜和耐蚀机理分析表明, 有机掺杂钝化液中各组分间发生了反应, 在Al管表面起到协同钝化作用, 均匀成膜, 从而有效增强了Al管的耐腐蚀性能.
关键词 Al管 有机杂化膜 耐蚀性 电化学性质 表面形貌 机理    
Abstract:Dense and hydrophobic organic hybrid films were deposited on the surface of aluminum tubes by the method of chemical immersion. Corrosion resistance of hybrid films was examined by bluestone drips, hydrogen evolution and copper accelerated salt spray tests, and the results show that the hybrid film significantly increases the corrosion resistance of aluminum tubes, with better protection than that of chromate passivation films. Tafel polarization curves and electrochemical impedance spectroscopy (EIS) were employed to investigate the electrochemical properties of hybrid films, the results indicate that the hybrid film greatly enhances the resistance of Al and reduces obviously the corrosion current density, which results in effective decrease to the corrosion rate of Al. Adhesion and bending experiments show that hybrid films have good adhesion and play a good performance on bending resistance. The surface structure and composition of hybrid films are analyzed using SEM, AFM and EDS. It is found that the surface of hybrid films, mainly consisting of Al, C, O, Si and P elements, is smooth, uniform and dense. The film surface is deposited a large number of amorphous solid granules with high coverage. Mechanism analysis of hybrid films’ formation and anticorrosion indicates that the reactions are taken place in the components of the organic hybrid passivation solution, synergistic passivation is carried out on the surface of aluminum tubes, and then uniform films are obtained, which effectively enhance the corrosion resistance of aluminum tubes.
Key wordsaluminum tube    organic hybrid film    corrosion resistance    electrochemical property    surface morphology    mechanism
收稿日期: 2010-05-30     
基金资助:

长沙市科技成果产业化立项资助项目K0902110-11

作者简介: 梁永煌, 男, 1985年生, 硕士生
[1] 沈学明. 家用电冰箱铝蒸发器的内漏成因及对策[J]. 制冷与空调,2002,2(4):70-72
[2] Seong-woo Woo, Dennis L. O’Neal, Michael Pecht. Failure analysis and redesign of the evaporator tubing in a Kimchi refrigerator[J]. Engineering Failure Analysis,2010,17(2): 369-379
[3] 纪红,朱祖芳. 铝及铝合金无铬表面处理技术研究进展究[J]. 电镀与涂饰,2009,28(6): 34-36(39)
[4] D. Zhu, W.J. van Ooij. Corrosion protection of AA 2024-T3 by bis-[3-(triethoxysilyl)propyl]tetrasulfide in neutral sodium chloride solution. Part 1: corrosion of AA 2024-T3[J]. Corrosion Science, 2003, 45(10):2163-2175
[5] D. Zhu, W.J. van Ooij. Corrosion protection of AA 2024-T3 by bis-[3-(triethoxysilyl)propyl]tetrasulfide in sodium chloride solution: Part 2: mechanism for corrosion protection[J]. Corrosion Science, 2003,45(10):2177-2197
[6] A. Seth, W.J. van Ooij, P. Puomi, et al. Novel, one-step, chromate-free coatings containing anticorrosion pigments for metals-An overview and mechanistic study[J]. Progress in Organic Coatings,2007,58(2-3):136-145
[7] ?. Jovanovi?, J.B. Bajat, R.M. Jan?i?-Heinemann, et al. Methacryloxypropyltrimethoxysilane films on aluminium: Electrochemical characteristics, adhesion and morphology[J]. Progress in Organic Coatings, 2009,66(4):393-399.
[8] Ji-Ming Hu, Liang Liu, Jian-Qing Zhang, et al. Effects of electrodeposition potential on the corrosion properties of bis-1,2-[triethoxysilyl]ethane films on aluminium alloy[J]. Electrochimica Acta,2006,51(19):3944–3949.
[9] W. Xiao, R.L. Man, C. Miao, et al. Study on corrosion resistance of the BTESPT silane cooperating with rare earth cerium on the surface of aluminum tubes[J]. Journal of Rare Earths,2010,28(1):117-122
[10] 满瑞林,徐斌,李兵等. 制冷设备中热交换用铝管在线钝化及其耐蚀性能[J]. 腐蚀科学与防护技术, 2008,20(1): 54-57
[11] 李凌杰,欧孝通,陈德贤等. 改进溶胶-凝胶工艺制备铝合金硅基防护膜[J]. 腐蚀科学与防护技术,2009,21(2):197-199[12] 唐子龙,刘哲. LY12铝合金NaOH介质电解着色膜耐蚀性的电化学评价[J]. 中国腐蚀与防护学报,2010,30(1):25-28(34)
[13] 李鑫庆,陈迪勤,余静琴. 化学转化膜技术与应用[M]. 北京: 机械工业出版社,2005.5
[14] 曹楚南,张鉴清. 电化学阻抗谱导论[M]. 北京:科学出版社,2002.7
[15] 胡吉明,张鉴清,曹楚南. 铝合金表面环氧涂层中水传输行为的电化学阻抗谱研究[J]. 金属学报, 2003,39(5):544-549
[16] 胡吉明,刘倞, 张金涛等. 铝合金表面BTSE硅烷化处理研究[J]. 金属学报, 2004,40(11):1189-1194
[17] 徐溢,唐守渊,陈立军. 反射吸收红外光谱法研究铝表面硅烷试剂膜的结构与性能[J]. 分析化学研究简报,2002,30(4):464-466)
[18] 郭春伟. 烷基磷酸酯的合成及性能研究[D]. 无锡:江南大学,2005.3
[19] 谢晶曦,常俊标,王绪明. 红外光谱在有机化学和药物化学中的应用[M]. 北京:科学出版社,2001
[20] W.J. van Ooij, D. Zhu, M. Stacy, et al. Corrosion Protection Properties of Organofunctional Silanes-An Overview[J]. Tsinghua Science & Technology, 2005,10(6):639-664
[21] 杜作栋,陈剑华. 有机硅化学[M].北京:高等教育出版社,1990.6
[22] W.J. Van Ooij, T.Child. Protecting metals with silane coupling agents[J]. Chemtech,1998,28 (2):26-35.
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[3] 刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.
[4] 许林杰, 刘徽, 任玲, 杨柯. CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
[5] 曹姝婷, 张少华, 张健. GH4061合金在高压富氧环境下的燃烧行为[J]. 金属学报, 2023, 59(4): 547-555.
[6] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[7] 彭子超, 刘培元, 王旭青, 罗学军, 刘健, 邹金文. 不同服役条件下FGH96合金的蠕变特征[J]. 金属学报, 2022, 58(5): 673-682.
[8] 李亚敏, 张瑶瑶, 赵旺, 周生睿, 刘洪军. CuInconel 718合金Nb偏析影响机理的第一性原理研究[J]. 金属学报, 2022, 58(2): 241-249.
[9] 朱苗勇, 邓志银. 钢精炼过程非金属夹杂物演变与控制[J]. 金属学报, 2022, 58(1): 28-44.
[10] 郭磊, 高远, 叶福兴, 张馨木. 航空发动机热障涂层的CMAS腐蚀行为与防护方法[J]. 金属学报, 2021, 57(9): 1184-1198.
[11] 曹富荣, 丁鑫, 项超, 尚会会. Mg-4.4Li-2.5Zn-0.46Al-0.74Y合金高温变形流动应力、组织演变与本构分析[J]. 金属学报, 2021, 57(7): 860-870.
[12] 黄一川, 王清, 张爽, 董闯, 吴爱民, 林国强. 用于燃料电池双极板的不锈钢成分优化[J]. 金属学报, 2021, 57(5): 651-664.
[13] 朱雯婷, 崔君军, 陈振业, 冯阳, 赵阳, 陈礼清. 690 MPa级高强韧低碳微合金建筑结构钢设计及性能[J]. 金属学报, 2021, 57(3): 340-352.
[14] 温斌, 田永君. 纳米孪晶金属和纳米孪晶共价材料的力学行为[J]. 金属学报, 2021, 57(11): 1380-1395.
[15] 王雪梅, 殷正正, 于晓彤, 邹玉红, 曾荣昌. AZ31镁合金表面苯丙氨酸、甲硫氨酸和天冬酰胺诱导Ca-P涂层耐蚀性能比较[J]. 金属学报, 2021, 57(10): 1258-1271.