Please wait a minute...
金属学报  2010, Vol. 46 Issue (5): 513-527    DOI: 10.3724/SP.J.1037.2009.00860
  综述 本期目录 | 过刊浏览 |
高温合金在能源工业领域中的应用现状与发展
郭建亭
中国科学院金属研究所;  沈阳 110016
THE CURRENT SITUATION OF APPLICATION AND DEVELOPMENT OF SUPERALLOYS IN THE FIELDS OF ENERGY INDUSTRY
GUO Jianting
Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
引用本文:

郭建亭. 高温合金在能源工业领域中的应用现状与发展[J]. 金属学报, 2010, 46(5): 513-527.
. THE CURRENT SITUATION OF APPLICATION AND DEVELOPMENT OF SUPERALLOYS IN THE FIELDS OF ENERGY INDUSTRY[J]. Acta Metall Sin, 2010, 46(5): 513-527.

全文: PDF(1117 KB)  
摘要: 

高温合金在能源领域中有着广泛的应用. 煤电用高参数超超临界发电锅炉中, 过热器和再过热器必须使用抗蠕变性能良好, 在蒸汽侧抗氧化性能和在烟气侧抗腐蚀性能优异的高温合金管材; 在气电用燃气轮机中, 涡轮叶片和导向叶片需要使用抗高温腐蚀性能优良和长期组织稳定的抗热腐蚀高温合金; 在核电领域中, 蒸汽发生器传热管必须选用抗溶液腐蚀性能良好的高温合金; 在煤的气化和节能减排领域, 广泛采用抗高温热腐蚀和抗高温磨蚀性能优异的高温合金; 在石油和天然气开采, 特别是深井开采中, 钻具处于4-150 ℃的酸性环境中, 加之CO2, H2S和泥沙等的存在, 必须采用耐蚀耐磨高温合金. 本文简要介绍了国内外高温合金在上述领域中应用的现状与发展.

关键词 高温合金能源工业煤电气电核电油气开采    
Abstract

Superalloys are extensively applied in the fields of energy industry. In the high parameter ultra--supercritical boiler used for coal--fired generation, superheater/reheater tubes must be made of superalloys which meet the requirement of good creep resistant, good fire--side corrosion resistant and steam--side oxidation resistant properties. In gas turbine engine used for gas power, turbine blades and guide vanes should be made of hot--corrosion resistant superalloys which must meet the requirements with respect to excellent high temperature corrosion resistance and long--term microstructural stability. In the field of nuclear power, heat exchange tubes used for steam generator require superalloys with excellent solution corrosion resistance. In the field of coal gasification and energy conservation and pollution reduction, the superalloys with excellent hot corrosion resistant and high temperature wear resistant properties are widely applied. In petroleum exploitation, especially in deep mining, drilling tools must be made of corrosion resistant and wear resistant superalloys because of the sour environment, the temperature of 4-150 ℃ and the existences of CO2, H2S, sand and so on. This paper makes a brief introduction on the current situation of application and development of the superalloys at home and abroad in these fields.

Key wordssuperalloy    energy industry    coal power    gas power    nuclear power    petroleum exploitation
收稿日期: 2009-12-25     
作者简介: 郭建亭, 男, 1938年生, 研究员

[1]Chen Y S. Power Eng, 2003; 23: 2615
[2](陈燕荪. 动力工程. 2003; 23: 2615)
[3]Chen J P. Power Eng, 2009; 29: 1
[4](程均培. 动力工程. 2009; 29: 1)
[5]Bian X J, Wang N N, Cao Y J. Zhejiang Electr Power, 2003; (2): 21
[6](边小君, 王娜娜, 曹云娟. 浙江电力, 2003; (2): 21)
[7]Merckling G. J Pressure Vessels Piping, 2008; 85: 2
[8]Wright I G, Tortorellip F. Program on Technology Innovation: Oxide Growth and Exfoliation on Alloys Exposed to Steam Palo Alto, CA: EPRI, 2007
[9]Huang Y L. Thermal Power Generation, 2002; (2): 2
[10](黄雅罗. 热力发电, 2002; (2): 2)
[11]Guo J T, Du X K. Acta Metall Sin, 2005; 41: 1221
[12](郭建亭, 杜秀魁. 金属学报, 2005; 41: 1221)
[13]Smith G D, Sizek H W. Corrosion 2002. Houston: NACE International, 200000256,1
[14]Comprehensive Topical Group in the Energy Science and Technology, China Association for Science and Technology. The Study on the Development of Chinese Energy Science and Technology, 2004, 4
[15](中国科协能源科学技术综合专题组. 2020年的中国能源科学和技术发展研究, 2004, 4)
[16]Guo J T, Hu Z Q. The 11th Int Symposium on Advanced Superalloy Production and Application. Beijing: Metallurgical Industry Press, 2007: 3
[17](郭建亭, 胡壮麒. 动力与能源用高温结构材料-第十一届中国高温合金年会论文集. 北京: 冶金工业出版社, 2007: 3)
[18]Polyzakis A I, koroneos C, Xydis G. Energy Conversion Management, 2008; 49: 551
[19]Balsone S J. Buckets, Nozzles. The Gas Turbine Handbook. US Department, Office of Fossil Energy, National Energy Technology Laboratory, 2006: 411
[20]Viswanathan R, Scheirer S T. Materials Technology for Advanced Land Based Gas Turbine. EPRL Palo Alto CA94304, USA: Power Tech Associate, Media, PA19063.USA
[21]Viswanathan R. Gas Turbine Blade Superalloy Materials Property Handbook, Topical Report, 2001
[22]Wall J B, Hanis K. Superalloys in Industrial Gas Turbines–an Overiew, presented at the 9th world conference on investment casting, oct.13–16, 1996, CA USA
[23]Data of Mitsubishi Company. The Chemical Compositions Table 4, 2, 1 of Superalloys Used for Turbine Rotor Blade.
[24](三菱公司资料. 透平动叶用耐热合金的化学组成表4, 2, 1)
[25]Zhang Y, Tu G Y. In: Shi C X, Lu D, Rong K, eds., Forty Years of Superalloy R&D in China, Beijing: China Science and Technology Press, 1996: 88
[26](张匀, 涂干云. 师昌绪, 陆 达, 荣科主编, 中国高温合金四十年. 北京: 中国科学技术出版社, 1996: 88)
[27]Guo J T. A Study on the Materials and Technology of High–Temperature Turbine and Guide Vane Used for Naval Gas Turbine Engine, 2002, 1, 29.
[28](郭建亭. 舰用燃气轮机高温涡轮和导向叶片材料及工艺研究, 2002, 1, 29)
[29]Guo J T. Study on Utilization of Revert Alloy K640S (Stellite31). 1996, 9
[30](郭建亭. K640S(Stellite31)返回料的利用研究. 1996年9月)
[31]Zhou L Z, Guo J T. The Development of Superalloy K445 Used for Gas Turbine Compressor Blade, 2005, 11
[32](周兰章, 郭建亭. 重型燃机涡轮工作叶片材料K445合金研制, 2005年11月)
[33]Yuan C, Guo J T. The Development of Superalloy K447 Used for Gas Turbine Guide Vane, 2005, 11
[34](袁超, 郭建亭. 重型燃气轮机导向叶片用K447合金研制总结, 2005年11月)
[35]Guo J T, Zhou L Z, Yuan C. The Development of Special Materials Used for Naval Gas Turbine Engine, 2004, 11
[36](郭建亭, 周兰章, 袁超. 舰用燃气轮机用特殊材料研制, 2004年11月)
[37]Wu Y N, Ke P L, Wang Q M, Sun C, Wang F H, Lou L H, Wen L S. J Iron Steel Res, 2003; 15(7): 219
[38](武颖娜, 柯培玲, 王启民, 孙超, 王福会, 楼琅洪, 闻立时. 钢铁研究学报, 2003; 15(7): 219)
[39]Xiao J X, Gao S K, Han W K. Energy China, 2009; 31(3): 5
[40](肖新建, 高世宽, 韩文科. 中国能源, 2009; 31(3): 5)
[41]Hofmeister J, Waata C, Starflinger J, Schulenberg T, Laurien E. Nuclear Eng Des, 2007; 237: 1513
[42]Yang W D. Nuclear Reactor Materials. Beijing: Atomic Energy Press, 2006: 3
[43](杨文斗. 反应堆材料学. 北京: 原子能出版社, 2006: 3)
[44]Hu Z Q, Guo J T. In: Lecomte–Beckers J, Carton M, Schubrt F, Ennis P J, eds., Materials for Advanced Power Engineering 2006, Forschungszentrum Julich GmbH. 2006: Part1, 189
[45]Hasegawa M, Translated by Sun S R. Nuclear Reactor Materials Handbook. Beijing: China Electric Power Press, 1987: 2
[46](长谷川正义, 孙守仁译. 核反应堆材料手册. 北京: 中国电力出版社, 1987: 2)
[47]Zhu R Z, Lu Y X. Heat Resistant Steels and Superalloys. Beijing: Chemical Industry Press, 1996: 8
[48](朱日彰, 卢亚轩. 耐热钢和高温合金. 北京: 化学工业出版社, 1996: 8)
[49]Gang Y M. China Stainless Steel Corrosion Handbook, Beijing: Metallurgical Industry Press, 1992: 11
[50](冈毅民. 中国不锈钢腐蚀手册. 北京: 冶金工业出版社, 1992: 11)
[51]Lu S Y. Nickel Base and Iron–Nickel Base Heat Resistant Alloys. Beijing: Chemical Industry Press, 1989: 10
[52](陆世英. 镍基及铁镍耐热合金. 北京: 化学工业出版社, 1989: 10)
[53]Kutz M, Translated by Chen X B, Zhang S L. Handbook of Materials Selection, Beijing: Chemical Industry Press, 2005: 3
[54](Kutz M, 陈祥宝, 臧圣龙译. 材料选用手册. 北京: 化学工业出版社, 2005: 3)
[55]Ye J. American Nickel Base Superalloys. Beijing: Science Press, 1978: 5
[56](冶军. 美国镍基高温合金. 北京: 科学出版社, 1978: 5)
[57]The Editorial Board of China Aeronautical Materials Handbook. China Aeronautical Materials Handbook. 2nd Ed, Vol.2, Beijing: Standards Press of China, 2002: 186
[58](《中国航空材料手册》编委会. 中国航空材料手册(第二版)第2卷. 北京: 中国标准出版社, 2002: 186)
[59]Li Q, Zhou B X. Acta Metall Sin, 2001; 37: 8
[60](李强, 周邦新. 金属学报.,2001; 37: 8)
[61]Institute of Metal Research, Chinese Academy of Sciences. A Microdissection Analysis of Engine Turbine Disc, 1986: 9
[62](中国科学院金属研究所. 一种发动机涡轮盘显微解剖分析. 1986: 9)
[63]Patel S. Corrosion–Resistant Nickel–Base Alloys for Oil&Gas Service. International Symposium on Advanced Superalloys–Production and Application, May 21–25, 2007. Shanghai, China
[64]Guo J T. Materials Science and Engineering for Superalloys Vol.01, Application Basic Theory. Beijing: Science Press, 2008: 18
[65](郭建亭. 高温合金材料学(上), 应用基础理论. 北京: 科学出版社, 2008: 18)
[66]Kang C G. In: Gan Y, Tian Z L, Dong H, Feng D, Wang X L, eds., Nickel and Iron Base Corrosion Resistant Suerpalloys. China Materials Engineering Canon, Vol.02, Materials Engineering for Iron and Steel (Vol.01). Beijing: Chemical Industry Press, 2006: 525
[67](康春光. 见: 干 勇, 田志凌, 董瀚, 冯 涤, 王新林主编.
[68]镍基和铁基耐蚀合金. 中国材料工程大典, 第2卷, 钢铁材料工程(上), 北京: 化学工业出版社, 2006: 525)
[69]Dai P K, Chen J P. Development of New Techniques in Thermal Power Generation, 2004; (1): 1
[70](戴佩琨, 程钧培. 火力发电新技术发展, 2004; (1): 1)
[71]Zhu R Z, Lu Y X. Heat Resistant Steels and Superalloys. Beijing: Chemical Industry Press, 1995: 234
[72](朱日彰, 卢亚轩. 耐热钢和高温合金, 北京: 化学工业出版社, 1995: 234)
[73]Li K X, Liu L S. Pet Knowl, 2007; (1): 29
[74](李克雄, 刘陇生. 石油知识, 2007; (1): 29)
[75]Li Z X, Zhang Y. Pet Refinery Eng, 2004; 34(11): 44
[76](李志雄, 张涌. 炼油技术与工程, 2004; 34(11): 44)
[77]Zhou R F, Han Y F, Li S S. High Temperature Structural Materials. Beijing: National Defence Industry Press, 2006: 49
[78](周瑞发, 韩亚芳, 李树索. 高温结构材料. 北京: 国防工业出版社, 2006: 49)
[79]Department of Superalloys at Beijing Iron and Steel Institute. GH132. Beijing: National Defence Industry Press, 1980: 22
[80](北京钢铁学院高温合金教研室. GH132合金, 北京: 国防工业出版社, 1980: 22)
[81]Huang X Y, Wang D. In: Shi C X, Lu D, Rong K, eds., Forty Years of Superalloy R&D in China, Beijing: China Science and Technology Press, 1996: 92
[82](黄乾尧, 王迪. 师昌绪, 陆 达, 荣科主编, 中国高温合金四十年, 北京: 中国科学技术出版社, 1996: 92)
[83]Shi C. X, Li H D, Zhou L. Materials Science and Engineering Handbook (Vol.01). Beijing: Chemical Industry Press, 2004: 241
[84](师昌绪, 李恒德, 周 廉. 材料科学与工程手册(上卷). 北京: 化学工业出版社, 2004: 241)
[85]The Editorial Board of China Aeronautical Materials Handbook. China Aeronautical Materials Handbook (the Second Edition) Vol.02. Wrought Superalloys and Cast Superalloys. Beijing: Standards Press of China, 2002: 547
[86](《中国航空材料手册》编委会. 中国航空材料手册(第2\linebreak 版) -变形高温合金铸造高温合金. 北京: 中国标准出版社, 2002: 547)
[87]Lou L H. Personal Communication, 2009, 5
[88](楼琅洪. 私人讨论, 2009年5月)

[1] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[2] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[4] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[5] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[6] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[7] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[8] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[9] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[10] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[11] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[12] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[13] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[14] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[15] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.