Please wait a minute...
金属学报  2025, Vol. 61 Issue (9): 1320-1334    DOI: 10.11900/0412.1961.2023.00489
  研究论文 本期目录 | 过刊浏览 |
Zr ODS FeCrAl合金在550Pb-Bi熔液中的腐蚀行为
张晓晨1,2, 李静1,3(), 李长记4, 熊良银1,3, 刘实1,3
1 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2 中国科学技术大学 材料科学与工程学院 沈阳 110016
3 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
4 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
Corrosion Behavior of ODS FeCrAl Alloys Containing Zr Exposed to Lead-Bismuth Eutectic at 550 oC
ZHANG Xiaochen1,2, LI Jing1,3(), LI Changji4, XIONG Liangyin1,3, LIU Shi1,3
1 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
4 Shenyang National Laboratory for Materials Science, Institute of Metals Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

张晓晨, 李静, 李长记, 熊良银, 刘实. 含Zr ODS FeCrAl合金在550Pb-Bi熔液中的腐蚀行为[J]. 金属学报, 2025, 61(9): 1320-1334.
Xiaochen ZHANG, Jing LI, Changji LI, Liangyin XIONG, Shi LIU. Corrosion Behavior of ODS FeCrAl Alloys Containing Zr Exposed to Lead-Bismuth Eutectic at 550 oC[J]. Acta Metall Sin, 2025, 61(9): 1320-1334.

全文: PDF(5789 KB)   HTML
摘要: 

结构材料与液态Pb-Bi熔液的相容性是铅冷快堆发展应用亟待解决的关键问题,氧化物弥散强化(ODS) FeCrAl合金是极具发展潜力的结构材料之一,但是对于高强度的含Zr ODS FeCrAl合金在液态Pb-Bi熔液中的研究较少。本工作利用SEM、XRD、EPMA等分析技术研究了粉末冶金法制备的含Zr ODS FeCrAl合金经550 ℃饱和氧液态Pb-Bi共晶合金浸泡10000 h后的腐蚀产物,研究了Zr、Ti、Al和O等元素含量对ODS FeCrAl合金耐Pb-Bi腐蚀性能的影响。结果表明,由于Zr元素在氧化初期抑制Al与O元素结合、阻碍Al元素向外扩散,使得含Zr ODS FeCrAl合金表面无法生成连续、保护性的Al2O3薄膜,腐蚀产物主要由薄的Al2O3膜和疖状的Fe的多层氧化物组成。疖状氧化物的分布和形貌受含Zr ODS FeCrAl合金中Ti、Al和O含量的影响。增加含Zr ODS FeCrAl合金中的O含量,会使Y-Zr-O纳米强化相高密度析出,基体中对Al2O3薄膜有不利影响的Zr含量降低,进而使疖状氧化物的数量、厚度及表面横向尺寸降低。在ODS FeCrAl合金中添加Ti元素,其对合金腐蚀行为的影响类似于Zr元素,可促进合金表面疖状氧化物数量增加。(4.0%~5.5%)Al的添加不能阻止含Zr ODS FeCrAl合金表面上生成Fe的氧化产物。

关键词 含Zr ODS FeCrAl合金Pb-Bi腐蚀Ti添加O含量Al含量    
Abstract

Lead-cooled fast reactor (LFR) is one of the most promising reactor types among the six reactor concepts outlined in the Technology Roadmap for Generation IV Nuclear Energy Systems. Lead-bismuth eutectics (LBEs) are often used as coolants for LFRs because of their excellent economy and safety. However, structural materials are eroded by high-density LBEs at high temperatures. The compatibility between LBE and structural materials is a key problem that must be urgently solved for the development and application of LFRs. Due to the pinning of dislocations and grain boundaries as well as capture of displaced atoms and helium bubbles by oxide nanoparticles, oxide dispersion strengthened (ODS) alloys exhibit outstanding high-temperature mechanical properties and swelling resistance under irradiation. Fe-based ODS alloys have emerged as candidates for cladding tubes and structural materials in advanced reactors. A protective alumina scale can be formed on the alloy surface by adding Al to ODS alloys, which prevents the further penetration of LBEs into the alloy substrate. However, Y-Al-O complex-oxide nanoparticles with a slightly larger size compared to Y-Ti-O complex nanoparticles (in ODS FeCr alloy) are also formed in the alloy, leading to a slight decrease in the high-temperature strength of ODS FeCrAl alloys. It is known that adding a small amount of Zr to ODS FeCrAl alloys is an effective strategy to compensate for the decrease of mechanical properties caused by the coarseness of oxide nanoparticles, as numerous small-sized Y-Zr-O complex nanoparticles would preferentially precipitate instead of Y-Al-O complex nanoparticles. Thus far, studies on the corrosion behavior and corresponding mechanism of ODS FeCrAl alloys containing Zr in LBEs have been scarce. In this work, ODS FeCrAl alloys containing Zr were prepared via powder metallurgy. After the alloys were corroded by an oxygen-saturated static liquid LBE at 550 oC for 10000 h, its corrosion products were characterized by SEM, XRD, and EPMA. The effects of Zr, Ti, Al, and O contents on the corrosion resistance of ODS FeCrAl alloys were studied. Due to the combination of Zr and O and its interference with the outward diffusion of Al at the initial stage of oxidation, no continuous, protective aluminum oxide scale was formed on the surface of the ODS FeCrAl alloys. The corrosion products were mainly composed of thin alumina scale and multilayer oxide nodules, and no peeling of oxidation products was observed on any of the specimens. Further, it was revealed that the outer layer of these oxide nodules was composed of Fe3O4 with a magnetite phase, the inner layer was composed of spinel FeCr2O4 and Fe(Cr, Al)2O4, and the internal oxidation zone (IOZ) contained the oxide of Al and Cr. In addition, the distribution and morphology of oxide nodules were also affected by the contents of Ti, Al, and O in the alloys. With an increase in O content, high-density Y-Zr-O complex nanoparticles precipitated in the ODS FeCrAl alloys containing Zr, which led to a reduction in the content of residual Zr in the substrate. Consequently, the Zr content, which adversely affected the formation of alumina scale, was reduced, and the quantity, thickness, and surface transverse dimension of oxide nodules decreased. Introducing Ti into the ODS FeCrAl alloys containing Zr was also found to be unfavorable to the formation of the alumina scale as its impact on corrosion behavior was similar to that of Zr. With the addition of Ti, an increased number of oxide nodules were formed on the surface of Zr-containing ODS FeCrAl alloys. Because the addition of (4.0%-5.5%)Al does not prevent the formation of Fe-rich oxide nodules on the ODS FeCrAl alloys containing approximately 0.3%Zr, it is necessary to further increase the Al content in the matrix to obtain a continuous alumina scale.

Key wordsODS FeCrAl alloy containing Zr    Pb-Bi corrosion    Ti addition    O content    Al content
收稿日期: 2023-12-15     
ZTFLH:  TG174  
基金资助:国家原子能机构核材料技术创新中心基金项目(ICNM-2023-YZ-03)
通讯作者: 李 静,jingli@imr.ac.cn,主要从事核用结构材料的研究
Corresponding author: LI Jing, professor, Tel: (024)83970760, E-mail: jingli@imr.ac.cn
作者简介: 张晓晨,女,1998年生,硕士生
AlloyCrWAlTiZrYOEx.OFe
CAZ-113.481.695.30-0.310.360.120.023Bal.
CAZ-213.581.695.28-0.310.360.240.143Bal.
CAZ-313.511.705.230.350.300.370.230.130Bal.
CAZ-413.991.814.110.330.280.350.100.006Bal.
CAZ-513.991.814.180.350.290.340.230.138Bal.
表1  氧化物弥散强化(ODS) FeCrAl合金的化学成分 (mass fraction / %)
图1  含Zr ODS FeCrAl合金中纳米氧化物形貌的TEM明场像与颗粒尺寸分布
图2  含Zr ODS FeCrAl合金轴向方向显微组织的OM像
Alloy

d

nm

ρv

1022 m-3

Quantitative percentage of oxide nanoparticles with different components / %
Y4Al2O9YTiO3Y2TiO5Y4Zr3O12Y2Zr2O7YZrO3ZrO2
CAZ-18.872.6723.40033.36.736.60
CAZ-26.623.894.10054.2041.70
CAZ-36.894.002.6017.146.329.14.90
CAZ-47.841.6028.67.1050.17.107.1
CAZ-57.243.034.2022.230.629.113.90
表2  含Zr ODS FeCrAl合金中纳米强化相物相分析结果
图3  经550 ℃、饱和氧Pb-Bi共晶(LBE)腐蚀10000 h后CAZ-2合金表面氧化产物形貌的SEM像及EDS分析
图4  经550 ℃、饱和氧LBE腐蚀10000 h后CAZ-3合金表面氧化产物形貌的SEM像及EDS分析
图5  经550 ℃、饱和氧LBE腐蚀10000 h后CAZ-2和CAZ-3合金氧化产物截面形貌的SEM像及基底氧化物EDS线扫描结果
图6  经550 ℃、饱和氧LBE腐蚀10000 h后CAZ-2和CAZ-3合金表面疖状腐蚀产物截面的EPMA元素面扫描结果
图7  经550 ℃、饱和氧LBE腐蚀10000 h后5种合金的XRD谱
图8  经550 ℃、饱和氧LBE腐蚀10000 h后CAZ-3和CAZ-5合金氧化产物表面与截面形貌的SEM像
图9  经550 ℃、饱和氧LBE腐蚀10000 h后CAZ-5合金表面疖状腐蚀产物截面的EPMA元素面扫描结果
图10  经550 ℃、饱和氧LBE腐蚀10000 h后CAZ-1合金氧化产物表面与截面形貌的SEM像,及疖状氧化物的SEM像和EDS面扫描结果
图11  经550 ℃、饱和氧LBE腐蚀10000 h后CAZ-4和CAZ-5合金氧化产物表面与截面形貌的SEM像
图12  含Zr ODS FeCrAl合金腐蚀机制示意图
图13  5种合金疖状腐蚀产物的表面平均横向尺寸和平均厚度及数密度
[1] OECD/NEA Nuclear Science Committee, translated by Rong L J, Zhang Y T, Lu S P, et al. Handbook on Lead-Bismuth Eutectic Alloy and Lead: Properties, Materials Compatibility, Thermal-Hydraulics and Technologies [M]. Beijing: Science Press, 2014: 3
[1] OECD/NEA Nuclear Science Committee著, 戎利建, 张玉妥, 陆善平等译. 铅与铅铋共晶合金手册——性能、材料相容性、热工水力学和技术 [M]. 北京: 科学出版社, 2014: 3
[2] Tian S J, Zhang J W. Corrosion behavior of 316L and T91 steels in stagnant lead-bismuth eutectic at 550 oC [J]. J. Univ. Sci. Technol. China, 2015, 45: 751
[2] 田书建, 张建武. 316L和T91不锈钢在550 ℃静态铅铋合金中的腐蚀行为 [J]. 中国科学技术大学学报, 2015, 45: 751
[3] Yeliseyeva O, Tsisar V, Benamati G. Influence of temperature on the interaction mode of T91 and AISI 316L steels with Pb-Bi melt saturated by oxygen [J]. Corros. Sci., 2008, 50: 1672
[4] Stepanov V V, Kashtanov A D, Shchutsky S Y, et al. On corrosion properties of ceramic materials for pump friction pairs in lead-bismuth environment [J]. Inorg. Mater.: Appl. Res., 2020, 11: 1434
[5] Rivai A K, Takahashi M. Compatibility of surface-coated steels, refractory metals and ceramics to high temperature lead-bismuth eutectic [J]. Prog. Nucl. Energy, 2008, 50: 560
[6] Wu S J, Li J, Li W H, et al. Characterization of oxide dispersoids and mechanical properties of 14Cr-ODS FeCrAl alloys [J]. J. Alloys Compd., 2020, 814: 152282
[7] Parida P K, Dasgupta A, Sinha S K. Comparison of microstructure and microtexture evolution in 9Cr and 18Cr oxide dispersion-strengthened steels during fuel clad tube fabrication [J]. J. Mater. Eng. Perform., 2021, 30: 9227.
[8] Narukawa T, Kondo K, Fujimura Y, et al. Behavior of FeCrAl-ODS cladding tube under loss-of-coolant accident conditions [J]. J. Nucl. Mater., 2023, 582: 154467
[9] Takaya S, Furukawa T, Aoto K, et al. Corrosion behavior of Al-alloying high Cr-ODS steels in lead-bismuth eutectic [J]. J. Nucl. Mater., 2009, 386-388: 507
[10] Li J, Zhang X C, Ma H B, et al. Effect of silicon and aluminum addition on corrosion behavior of ODS iron-based alloys in liquid lead-bismuth eutectic [J]. Acta Metall. Sin. (Engl. Lett.), 2023, 36: 732
[11] Unocic K A, Pint B A, Hoelzer D T. Advanced TEM characterization of oxide nanoparticles in ODS Fe-12Cr-5Al alloys [J]. J. Mater. Sci., 2016, 51: 9190
[12] Wu S J, Li J, Li C J, et al. Preliminary study on the fabrication of 14Cr-ODS FeCrAl alloy by powder forging [J]. J. Mater. Sci. Technol., 2021, 83: 49
doi: 10.1016/j.jmst.2020.12.032
[13] Yano Y, Tanno T, Oka H, et al. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions [J]. J. Nucl. Mater., 2017, 487: 229
[14] Pan X, Zhang Y P, Dong Z H, et al. Effect of pre-oxidation treatment on the corrosion resistance in stagnant liquid Pb-Bi eutectic of 12Cr ferritic/martensitic steel [J]. Acta Metall. Sin., 2024, 60: 639
doi: 10.11900/0412.1961.2022.00267
[14] 潘 霞, 张洋鹏, 董志宏 等. 预氧化处理对12Cr铁素体/马氏体钢耐Pb-Bi腐蚀性能的影响 [J]. 金属学报, 2024, 60: 639
[15] Long D J, Sun Y D, Zhang R Q, et al. Effects of Zr content on the microstructure of FeCrAl ODS steels [J]. Metals, 2022, 12: 1114
[16] Wang X, Lu Z, Li Z Y, et al. Effect of Zr content on microstructure and hardness of ODS-FeCrAl alloys [J]. Mater. Charact., 2022, 192: 112221
[17] Dou P, Jiang S M, Qiu L L, et al. Effects of contents of Al, Zr and Ti on oxide particles in Fe-15Cr-2W-0.35Y2O3 ODS steels [J]. J. Nucl. Mater., 2020, 531: 152025
[18] Mohan S, Kaur G, Panigrahi B K, et al. Effect of Zr and Al addition on nanocluster formation in oxide dispersion strengthened steel—An ab initio study [J]. J. Alloys Compd., 2018, 767: 122
[19] Pimentel G, Capdevila C, Bartolomé M J, et al. Advanced FeCrAl ODS steels for high-temperature structural applications in energy generation systems [J]. Rev. Metal., 2012, 48: 303
[20] Zhu Z G, Tan J B, Wu X Q, et al. Corrosion behaviors of FeCrAl alloys exposed to oxygen-saturated static lead bismuth eutectic at 550 oC [J]. Corros. Sci., 2022, 209: 110767
[21] Benamati G, Fazio C, Piankova H, et al. Temperature effect on the corrosion mechanism of austenitic and martensitic steels in lead-bismuth [J]. J. Nucl. Mater., 2002, 301: 23
[22] Wang J, Lu S P, Rong L J, et al. Effect of silicon on the oxidation resistance of 9 wt.% Cr heat resistance steels in 550 oC lead-bismuth eutectic [J]. Corros. Sci., 2016, 111: 13
[23] Wu X Q, Rong L J, Tan J B, et al. Research advance on liquid lead-bismuth eutectic corrosion resistant Si enhanced ferritic/martensitic and austenitic stainless steels [J]. Acta Metall. Sin., 2023, 59: 502
doi: 10.11900/0412.1961.2022.00531
[23] 吴欣强, 戎利建, 谭季波 等. 耐Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展 [J]. 金属学报, 2023, 59: 502
doi: 10.11900/0412.1961.2022.00531
[24] Weisenburger A, Jianu A, Doyle S, et al. Oxide scales formed on Fe-Cr-Al-based model alloys exposed to oxygen containing molten lead [J]. J. Nucl. Mater., 2013, 437: 282
[25] Engkvist J, Bexell U, Grehk M, et al. High temperature oxidation of FeCrAl-alloys—Influence of Al-concentration on oxide layer characteristics [J]. Mater. Corros., 2009, 60: 876
[26] Maeda T, Ukai S, Hayashi S, et al. Effects of zirconium and oxygen on the oxidation of FeCrAl-ODS alloys under air and steam conditions up to 1500 oC [J]. J. Nucl. Mater., 2019, 516: 317
doi: 10.1016/j.jnucmat.2019.01.041
[27] Ukai S, Sakamoto K, Ohtsuka S, et al. Alloy design and characterization of a recrystallized FeCrAl-ODS cladding for accident-tolerant BWR fuels: An overview of research activity in Japan [J]. J. Nucl. Mater., 2023, 583: 154508
[28] Hou P Y. Impurity effects on alumina scale growth [J]. J. Am. Ceram. Soc., 2003, 86: 660
[29] Guo H B, Wang X Y, Li J, et al. Effects of Dy on cyclic oxidation resistance of NiAl alloy [J]. Trans. Nonferrous Met. Soc. China, 2009, 19: 1185
[30] Hosemann P, Thau H T, Johnson A L, et al. Corrosion of ODS steels in lead-bismuth eutectic [J]. J. Nucl. Mater., 2008, 373: 246
[31] Lee J H, Kasada R, Kimura A, et al. Influence of alloy composition and temperature on corrosion behavior of ODS ferritic steels [J]. J. Nucl. Mater., 2011, 417: 1225
[32] Smialek J L, Doychak J, Gaydosh D J. Oxidation behavior of FeAl + Hf, Zr, B [J]. Oxid. Met., 1990, 34: 259
[33] Pint B A. Optimization of reactive-element additions to improve oxidation performance of alumina-forming alloys [J]. J. Am. Ceram. Soc., 2003, 86: 686
[34] Ejenstam J, Jönsson B, Szakalos P. Optimizing the oxidation properties of FeCrAl alloys at low temperatures [J]. Oxid. Met., 2017, 88: 361
[35] Quadakkers W J, Elschner A, Speier W, et al. Composition and growth mechanisms of alumina scales on FeCrAl-based alloys determined by SNMS [J]. Appl. Surf. Sci., 1991, 52: 271
[36] Naumenko D, Pint B A, Quadakkers W J. Current thoughts on reactive element effects in alumina-forming systems: In memory of John Stringer [J]. Oxid. Met., 2016, 86: 1
[37] Yang L, Lv H T, Wan C L, et al. Review: Mechanism of reactive element effect—Oxide pegging [J]. Acta Metall. Sin., 2021, 57: 182
doi: 10.11900/0412.1961.2020.00222
[37] 杨 亮, 吕皓天, 万春磊 等. 综述: 活性元素作用机理——氧化物“钉扎”模型 [J]. 金属学报, 2021, 57: 182
[38] Li Q, Yang Y P, Huang C J, et al. Microstructure of oxide film and nodular corrosion mechanism of zircaloy-4 alloy [J]. Rare Met. Mater. Eng., 2013, 42: 1814
[38] 李 强, 杨艳平, 黄昌军 等. Zr-4合金氧化膜显微组织与疖状腐蚀机制研究 [J]. 稀有金属材料与工程, 2013, 42: 1814
[39] Martinelli L, Balbaud-Célérier F, Terlain A, et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy (Part I) [J]. Corros. Sci., 2008, 50: 2523
[40] Martinelli L, Balbaud-Célérier F, Terlain A, et al. Oxidation mechanism of an Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy at 470 oC (Part II) [J]. Corros. Sci., 2008, 50: 2537
[41] Martinelli L, Balbaud-Célérier F, Picard G, et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy (Part III) [J]. Corros. Sci., 2008, 50: 2549
[42] Heinzel A, Kondo M, Takahashi M. Corrosion of steels with surface treatment and Al-alloying by GESA exposed in lead-bismuth [J]. J. Nucl. Mater., 2006, 350: 264
[43] Inoue Y, Hiraide N, Hayashi A, et al. Effect of titanium on oxidation behavior of high-purity ferritic stainless steel [J]. Mater. Trans., 2019, 60: 1968
[44] Okabe H, Ike H. High temperature oxidation of Fe-18Cr alloys with small amounts of Ti [J]. J. Jpn. Inst. Met. Mater., 1980, 44: 254
[45] Li P, Li S, Li Y P, et al. Effect of titanium addition on the oxidation resistance of Fe-13Cr-5Al-0.3Ti alloy in air between 700 oC-1100 oC [J]. Mater. Res. Express, 2021, 8: 046525
[46] Popovic M P, Yang Y, Bolind A M, et al. Transmission electron microscopy (TEM) study of the oxide layers formed on Fe-12Cr-4Al ferritic alloy in an oxygenated Pb-Bi environment at 800 oC [J]. JOM, 2018, 70: 1471
[47] Teng J W, Gong X J, Yang B B, et al. Influence of Ti addition on oxidation behavior of Ni-Cr-W-based superalloys [J]. Corros. Sci., 2021, 193: 109882
[48] Han X Y, Wang J T, Liu Q, et al. Effect of grain control of Fe-Al-Cr alloy on its resistance to high temperature oxidation [J]. J. Chongqing Univ., 2020, 43(8): 64
[48] 韩校宇, 王锦涛, 刘 奇 等. Fe-Al-Cr合金的晶粒控制对合金抗高温氧化性的影响 [J]. 重庆大学学报, 2020, 43(8): 64
[1] 吴炀, 谢昂, 陈胜虎, 姜海昌, 戎利建. Nb奥氏体不锈钢中NbC的液态Pb-Bi共晶腐蚀行为及其对氧化层形成的影响[J]. 金属学报, 2025, 61(2): 287-296.
[2] 戴进财, 闵小华, 辛社伟, 刘凤金. 间隙元素OβTi-15Mo合金超低温力学性能的影响[J]. 金属学报, 2025, 61(2): 243-252.
[3] 孟泽, 李光强, 李腾飞, 郑庆, 曾斌, 刘昱. Ce75Cr1钢洁净度、组织与耐点蚀性能的影响[J]. 金属学报, 2024, 60(9): 1229-1238.
[4] 潘霞, 张洋鹏, 董志宏, 陈胜虎, 姜海昌, 戎利建. 预氧化处理对12Cr铁素体/马氏体钢耐Pb-Bi腐蚀性能的影响[J]. 金属学报, 2024, 60(5): 639-649.
[5] 陈胜虎, 戎利建. 超细晶铁素体-马氏体钢的高温氧化成膜特性及其对Pb-Bi腐蚀行为的影响[J]. 金属学报, 2021, 57(8): 989-999.
[6] 闵小华, 向力, 李明佳, 姚凯, 江村聪, 程从前, 土谷浩一. {332}<113>孪晶与等温ω相的组合对不同O含量Ti-15Mo合金力学性能的影响[J]. 金属学报, 2018, 54(9): 1262-1272.
[7] 鲁艳红, 宋元元, 陈胜虎, 戎利建. Al和Si对9Cr2WVTa钢力学性能及耐Pb-Bi腐蚀性能的影响*[J]. 金属学报, 2016, 52(3): 298-306.
[8] 喇培清,孟倩,姚亮,周毛熊,魏玉鹏. Al元素对热轧316L不锈钢显微组织和力学性能的影响[J]. 金属学报, 2013, 49(6): 739-744.
[9] 李晓诚 丁雨田 胡勇. Tb0.3Dy0.7Fe1.95-xTix (x=0, 0.03, 0.06, 0.09) 合金的微观组织与磁致伸缩性能[J]. 金属学报, 2012, 48(1): 11-15.
[10] 聂朝胤; 张碧云; 谢红梅 . 非平衡磁控溅射Ti添加类金刚石薄膜的结构分析[J]. 金属学报, 2007, 43(11): 1207-1210 .
[11] 敬和民; 吴欣强; 郑玉贵; 姚治铭; 柯伟 . Mo含量对不锈钢在环烷酸介质中腐蚀与中蚀的影响[J]. 金属学报, 2002, 38(10): 1067-1073 .