|
|
含Zr ODS FeCrAl合金在550 ℃ Pb-Bi熔液中的腐蚀行为 |
张晓晨1,2, 李静1,3( ), 李长记4, 熊良银1,3, 刘实1,3 |
1 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 2 中国科学技术大学 材料科学与工程学院 沈阳 110016 3 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016 4 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 |
|
Corrosion Behavior of ODS FeCrAl Alloys Containing Zr Exposed to Lead-Bismuth Eutectic at 550 oC |
ZHANG Xiaochen1,2, LI Jing1,3( ), LI Changji4, XIONG Liangyin1,3, LIU Shi1,3 |
1 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 4 Shenyang National Laboratory for Materials Science, Institute of Metals Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
张晓晨, 李静, 李长记, 熊良银, 刘实. 含Zr ODS FeCrAl合金在550 ℃ Pb-Bi熔液中的腐蚀行为[J]. 金属学报, 2025, 61(9): 1320-1334.
Xiaochen ZHANG,
Jing LI,
Changji LI,
Liangyin XIONG,
Shi LIU.
Corrosion Behavior of ODS FeCrAl Alloys Containing Zr Exposed to Lead-Bismuth Eutectic at 550 oC[J]. Acta Metall Sin, 2025, 61(9): 1320-1334.
[1] |
OECD/NEA Nuclear Science Committee, translated by Rong L J, Zhang Y T, Lu S P, et al. Handbook on Lead-Bismuth Eutectic Alloy and Lead: Properties, Materials Compatibility, Thermal-Hydraulics and Technologies [M]. Beijing: Science Press, 2014: 3
|
[1] |
OECD/NEA Nuclear Science Committee著, 戎利建, 张玉妥, 陆善平等译. 铅与铅铋共晶合金手册——性能、材料相容性、热工水力学和技术 [M]. 北京: 科学出版社, 2014: 3
|
[2] |
Tian S J, Zhang J W. Corrosion behavior of 316L and T91 steels in stagnant lead-bismuth eutectic at 550 oC [J]. J. Univ. Sci. Technol. China, 2015, 45: 751
|
[2] |
田书建, 张建武. 316L和T91不锈钢在550 ℃静态铅铋合金中的腐蚀行为 [J]. 中国科学技术大学学报, 2015, 45: 751
|
[3] |
Yeliseyeva O, Tsisar V, Benamati G. Influence of temperature on the interaction mode of T91 and AISI 316L steels with Pb-Bi melt saturated by oxygen [J]. Corros. Sci., 2008, 50: 1672
|
[4] |
Stepanov V V, Kashtanov A D, Shchutsky S Y, et al. On corrosion properties of ceramic materials for pump friction pairs in lead-bismuth environment [J]. Inorg. Mater.: Appl. Res., 2020, 11: 1434
|
[5] |
Rivai A K, Takahashi M. Compatibility of surface-coated steels, refractory metals and ceramics to high temperature lead-bismuth eutectic [J]. Prog. Nucl. Energy, 2008, 50: 560
|
[6] |
Wu S J, Li J, Li W H, et al. Characterization of oxide dispersoids and mechanical properties of 14Cr-ODS FeCrAl alloys [J]. J. Alloys Compd., 2020, 814: 152282
|
[7] |
Parida P K, Dasgupta A, Sinha S K. Comparison of microstructure and microtexture evolution in 9Cr and 18Cr oxide dispersion-strengthened steels during fuel clad tube fabrication [J]. J. Mater. Eng. Perform., 2021, 30: 9227.
|
[8] |
Narukawa T, Kondo K, Fujimura Y, et al. Behavior of FeCrAl-ODS cladding tube under loss-of-coolant accident conditions [J]. J. Nucl. Mater., 2023, 582: 154467
|
[9] |
Takaya S, Furukawa T, Aoto K, et al. Corrosion behavior of Al-alloying high Cr-ODS steels in lead-bismuth eutectic [J]. J. Nucl. Mater., 2009, 386-388: 507
|
[10] |
Li J, Zhang X C, Ma H B, et al. Effect of silicon and aluminum addition on corrosion behavior of ODS iron-based alloys in liquid lead-bismuth eutectic [J]. Acta Metall. Sin. (Engl. Lett.), 2023, 36: 732
|
[11] |
Unocic K A, Pint B A, Hoelzer D T. Advanced TEM characterization of oxide nanoparticles in ODS Fe-12Cr-5Al alloys [J]. J. Mater. Sci., 2016, 51: 9190
|
[12] |
Wu S J, Li J, Li C J, et al. Preliminary study on the fabrication of 14Cr-ODS FeCrAl alloy by powder forging [J]. J. Mater. Sci. Technol., 2021, 83: 49
doi: 10.1016/j.jmst.2020.12.032
|
[13] |
Yano Y, Tanno T, Oka H, et al. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions [J]. J. Nucl. Mater., 2017, 487: 229
|
[14] |
Pan X, Zhang Y P, Dong Z H, et al. Effect of pre-oxidation treatment on the corrosion resistance in stagnant liquid Pb-Bi eutectic of 12Cr ferritic/martensitic steel [J]. Acta Metall. Sin., 2024, 60: 639
doi: 10.11900/0412.1961.2022.00267
|
[14] |
潘 霞, 张洋鹏, 董志宏 等. 预氧化处理对12Cr铁素体/马氏体钢耐Pb-Bi腐蚀性能的影响 [J]. 金属学报, 2024, 60: 639
|
[15] |
Long D J, Sun Y D, Zhang R Q, et al. Effects of Zr content on the microstructure of FeCrAl ODS steels [J]. Metals, 2022, 12: 1114
|
[16] |
Wang X, Lu Z, Li Z Y, et al. Effect of Zr content on microstructure and hardness of ODS-FeCrAl alloys [J]. Mater. Charact., 2022, 192: 112221
|
[17] |
Dou P, Jiang S M, Qiu L L, et al. Effects of contents of Al, Zr and Ti on oxide particles in Fe-15Cr-2W-0.35Y2O3 ODS steels [J]. J. Nucl. Mater., 2020, 531: 152025
|
[18] |
Mohan S, Kaur G, Panigrahi B K, et al. Effect of Zr and Al addition on nanocluster formation in oxide dispersion strengthened steel—An ab initio study [J]. J. Alloys Compd., 2018, 767: 122
|
[19] |
Pimentel G, Capdevila C, Bartolomé M J, et al. Advanced FeCrAl ODS steels for high-temperature structural applications in energy generation systems [J]. Rev. Metal., 2012, 48: 303
|
[20] |
Zhu Z G, Tan J B, Wu X Q, et al. Corrosion behaviors of FeCrAl alloys exposed to oxygen-saturated static lead bismuth eutectic at 550 oC [J]. Corros. Sci., 2022, 209: 110767
|
[21] |
Benamati G, Fazio C, Piankova H, et al. Temperature effect on the corrosion mechanism of austenitic and martensitic steels in lead-bismuth [J]. J. Nucl. Mater., 2002, 301: 23
|
[22] |
Wang J, Lu S P, Rong L J, et al. Effect of silicon on the oxidation resistance of 9 wt.% Cr heat resistance steels in 550 oC lead-bismuth eutectic [J]. Corros. Sci., 2016, 111: 13
|
[23] |
Wu X Q, Rong L J, Tan J B, et al. Research advance on liquid lead-bismuth eutectic corrosion resistant Si enhanced ferritic/martensitic and austenitic stainless steels [J]. Acta Metall. Sin., 2023, 59: 502
doi: 10.11900/0412.1961.2022.00531
|
[23] |
吴欣强, 戎利建, 谭季波 等. 耐Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展 [J]. 金属学报, 2023, 59: 502
doi: 10.11900/0412.1961.2022.00531
|
[24] |
Weisenburger A, Jianu A, Doyle S, et al. Oxide scales formed on Fe-Cr-Al-based model alloys exposed to oxygen containing molten lead [J]. J. Nucl. Mater., 2013, 437: 282
|
[25] |
Engkvist J, Bexell U, Grehk M, et al. High temperature oxidation of FeCrAl-alloys—Influence of Al-concentration on oxide layer characteristics [J]. Mater. Corros., 2009, 60: 876
|
[26] |
Maeda T, Ukai S, Hayashi S, et al. Effects of zirconium and oxygen on the oxidation of FeCrAl-ODS alloys under air and steam conditions up to 1500 oC [J]. J. Nucl. Mater., 2019, 516: 317
doi: 10.1016/j.jnucmat.2019.01.041
|
[27] |
Ukai S, Sakamoto K, Ohtsuka S, et al. Alloy design and characterization of a recrystallized FeCrAl-ODS cladding for accident-tolerant BWR fuels: An overview of research activity in Japan [J]. J. Nucl. Mater., 2023, 583: 154508
|
[28] |
Hou P Y. Impurity effects on alumina scale growth [J]. J. Am. Ceram. Soc., 2003, 86: 660
|
[29] |
Guo H B, Wang X Y, Li J, et al. Effects of Dy on cyclic oxidation resistance of NiAl alloy [J]. Trans. Nonferrous Met. Soc. China, 2009, 19: 1185
|
[30] |
Hosemann P, Thau H T, Johnson A L, et al. Corrosion of ODS steels in lead-bismuth eutectic [J]. J. Nucl. Mater., 2008, 373: 246
|
[31] |
Lee J H, Kasada R, Kimura A, et al. Influence of alloy composition and temperature on corrosion behavior of ODS ferritic steels [J]. J. Nucl. Mater., 2011, 417: 1225
|
[32] |
Smialek J L, Doychak J, Gaydosh D J. Oxidation behavior of FeAl + Hf, Zr, B [J]. Oxid. Met., 1990, 34: 259
|
[33] |
Pint B A. Optimization of reactive-element additions to improve oxidation performance of alumina-forming alloys [J]. J. Am. Ceram. Soc., 2003, 86: 686
|
[34] |
Ejenstam J, Jönsson B, Szakalos P. Optimizing the oxidation properties of FeCrAl alloys at low temperatures [J]. Oxid. Met., 2017, 88: 361
|
[35] |
Quadakkers W J, Elschner A, Speier W, et al. Composition and growth mechanisms of alumina scales on FeCrAl-based alloys determined by SNMS [J]. Appl. Surf. Sci., 1991, 52: 271
|
[36] |
Naumenko D, Pint B A, Quadakkers W J. Current thoughts on reactive element effects in alumina-forming systems: In memory of John Stringer [J]. Oxid. Met., 2016, 86: 1
|
[37] |
Yang L, Lv H T, Wan C L, et al. Review: Mechanism of reactive element effect—Oxide pegging [J]. Acta Metall. Sin., 2021, 57: 182
doi: 10.11900/0412.1961.2020.00222
|
[37] |
杨 亮, 吕皓天, 万春磊 等. 综述: 活性元素作用机理——氧化物“钉扎”模型 [J]. 金属学报, 2021, 57: 182
|
[38] |
Li Q, Yang Y P, Huang C J, et al. Microstructure of oxide film and nodular corrosion mechanism of zircaloy-4 alloy [J]. Rare Met. Mater. Eng., 2013, 42: 1814
|
[38] |
李 强, 杨艳平, 黄昌军 等. Zr-4合金氧化膜显微组织与疖状腐蚀机制研究 [J]. 稀有金属材料与工程, 2013, 42: 1814
|
[39] |
Martinelli L, Balbaud-Célérier F, Terlain A, et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy (Part I) [J]. Corros. Sci., 2008, 50: 2523
|
[40] |
Martinelli L, Balbaud-Célérier F, Terlain A, et al. Oxidation mechanism of an Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy at 470 oC (Part II) [J]. Corros. Sci., 2008, 50: 2537
|
[41] |
Martinelli L, Balbaud-Célérier F, Picard G, et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy (Part III) [J]. Corros. Sci., 2008, 50: 2549
|
[42] |
Heinzel A, Kondo M, Takahashi M. Corrosion of steels with surface treatment and Al-alloying by GESA exposed in lead-bismuth [J]. J. Nucl. Mater., 2006, 350: 264
|
[43] |
Inoue Y, Hiraide N, Hayashi A, et al. Effect of titanium on oxidation behavior of high-purity ferritic stainless steel [J]. Mater. Trans., 2019, 60: 1968
|
[44] |
Okabe H, Ike H. High temperature oxidation of Fe-18Cr alloys with small amounts of Ti [J]. J. Jpn. Inst. Met. Mater., 1980, 44: 254
|
[45] |
Li P, Li S, Li Y P, et al. Effect of titanium addition on the oxidation resistance of Fe-13Cr-5Al-0.3Ti alloy in air between 700 oC-1100 oC [J]. Mater. Res. Express, 2021, 8: 046525
|
[46] |
Popovic M P, Yang Y, Bolind A M, et al. Transmission electron microscopy (TEM) study of the oxide layers formed on Fe-12Cr-4Al ferritic alloy in an oxygenated Pb-Bi environment at 800 oC [J]. JOM, 2018, 70: 1471
|
[47] |
Teng J W, Gong X J, Yang B B, et al. Influence of Ti addition on oxidation behavior of Ni-Cr-W-based superalloys [J]. Corros. Sci., 2021, 193: 109882
|
[48] |
Han X Y, Wang J T, Liu Q, et al. Effect of grain control of Fe-Al-Cr alloy on its resistance to high temperature oxidation [J]. J. Chongqing Univ., 2020, 43(8): 64
|
[48] |
韩校宇, 王锦涛, 刘 奇 等. Fe-Al-Cr合金的晶粒控制对合金抗高温氧化性的影响 [J]. 重庆大学学报, 2020, 43(8): 64
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|