|
|
六重对称合金枝晶生长场变量扩散元胞自动机模型 |
汤思璠1,2, 魏晶晶1, 岳怡心1, 李鹏宇1, 姚曼1, 王旭东1,2( ) |
1 大连理工大学 材料科学与工程学院 大连 116024 2 大连理工大学 辽宁省凝固控制与数字化制备技术重点实验室 大连 116024 |
|
Field-Variable Diffusion Cellular Automaton Model for Dendritic Growth with Sixfold Symmetry Alloys |
TANG Sifan1,2, WEI Jingjing1, YUE Yixin1, LI Pengyu1, YAO Man1, WANG Xudong1,2( ) |
1 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China 2 Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), Dalian University of Technology, Dalian 116024, China |
引用本文:
汤思璠, 魏晶晶, 岳怡心, 李鹏宇, 姚曼, 王旭东. 六重对称合金枝晶生长场变量扩散元胞自动机模型[J]. 金属学报, 2025, 61(6): 941-952.
Sifan TANG,
Jingjing WEI,
Yixin YUE,
Pengyu LI,
Man YAO,
Xudong WANG.
Field-Variable Diffusion Cellular Automaton Model for Dendritic Growth with Sixfold Symmetry Alloys[J]. Acta Metall Sin, 2025, 61(6): 941-952.
1 |
Kobayashi R. Modeling and numerical simulations of dendritic crystal growth [J]. Physica, 1993, 63D: 410
|
2 |
Kobayashi R. A numerical approach to three-dimensional dendritic solidification [J]. Exp. Math., 1994, 3: 59
|
3 |
Karma A, Rappel W J. Quantitative phase-field modeling of dendritic growth in two and three dimensions [J]. Phys. Rev., 1998, 57E: 4323
|
4 |
Karma A. Phase-field formulation for quantitative modeling of alloy solidification [J]. Phys. Rev. Lett., 2001, 87: 115701
|
5 |
Yamazaki M, Satoh J, Ohsasa K, et al. Numerical model of solidification structure formation in Fe-C alloy with peritectic transformation [J]. ISIJ Int., 2008, 48: 362
|
6 |
Wang W L, Ji C, Luo S, et al. Modeling of dendritic evolution of continuously cast steel billet with cellular automaton [J]. Metall. Mater. Trans., 2018, 49B: 200
|
7 |
Yamazaki M, Natsume Y, Harada H, et al. Numerical simulation of solidification structure formation during continuous casting in Fe-0.7mass% C alloy using cellular automaton method [J]. ISIJ Int., 2006, 46: 903
|
8 |
Tan W D, Bailey N S, Shin Y C. A novel integrated model combining cellular automata and phase field methods for microstructure evolution during solidification of multi-component and multi-phase alloys [J]. Comp. Mater. Sci., 2011, 50: 2573
|
9 |
Nastac L. Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys [J]. Acta Mater., 1999, 47: 4253
|
10 |
Yin H, Felicelli S D, Wang L. Simulation of a dendritic microstructure with the lattice Boltzmann and cellular automaton methods [J]. Acta Mater., 2011, 59: 3124
|
11 |
Beltran-Sanchez L, Stefanescu D M. A quantitative dendrite growth model and analysis of stability concepts [J]. Metall. Mater. Trans., 2004, 35A: 2471
|
12 |
Huo L, Han Z Q, Liu B C. Modeling and simulation of microstructure evolution of cast magnesium alloys using CA method based on two sets of mesh [J]. Acta Metall. Sin., 2009, 45: 1414
|
12 |
霍 亮, 韩志强, 柳百成. 基于两套网格的CA方法模拟铸造镁合金凝固过程枝晶形貌演化 [J]. 金属学报, 2009, 45: 1414
|
13 |
Wu M W, Xiong S M. Microstructure simulation of high pressure die cast magnesium alloy based on modified CA method [J]. Acta Metall. Sin., 2010, 46: 1534
|
13 |
吴孟武, 熊守美. 基于改进CA方法的压铸镁合金微观组织模拟 [J]. 金属学报, 2010, 46: 1534
doi: 10.3724/SP.J.1037.2010.00279
|
14 |
Jacot A, Rappaz M. A two-dimensional diffusion model for the prediction of phase transformations: Application to austenitization and homogenization of hypoeutectoid Fe-C steels [J]. Acta Mater., 1997, 45: 575
|
15 |
Schönfisch B. Anisotropy in cellular automata [J]. Biosystems, 1997, 41: 29
pmid: 9043675
|
16 |
Wei L, Lin X, Wang M, et al. A cellular automaton model for the solidification of a pure substance [J]. Appl. Phys., 2011, 103A: 123
|
17 |
Yin H B, Felicelli S D. A cellular automaton model for dendrite growth in magnesium alloy AZ91 [J]. Modell. Simul. Mater. Sci. Eng., 2009, 17: 075011
|
18 |
Song Y D. Microstructure simulation of magnesium alloy [D]. Dalian: Dalian University of Technology, 2012
|
18 |
宋迎德. 镁合金凝固组织模拟 [D]. 大连: 大连理工大学, 2012
|
19 |
Zhu M F, Stefanescu D M. Virtual front tracking model for the quantitative modeling of dendritic growth in solidification of alloys [J]. Acta Mater., 2007, 55: 1741
|
20 |
Rappaz M, Gandin C A. Probabilistic modelling of microstructure formation in solidification processes [J]. Acta Metall. Mater., 1993, 41: 345
|
21 |
Wang W, Lee P D, McLean M. A model of solidification microstructures in nickel-based superalloys: Predicting primary dendrite spacing selection [J]. Acta Mater., 2003, 51: 2971
|
22 |
Yin H, Felicelli S D. Dendrite growth simulation during solidification in the LENS process [J]. Acta Mater., 2010, 58: 1455
|
23 |
Nakagawa M, Natsume Y, Ohsasa K. Dendrite growth model using front tracking technique with new growth algorithm [J]. ISIJ Int., 2006, 46: 909
|
24 |
Liu Z Y, Xu Q Y, Liu B C. Modeling of dendrite growth for the cast Magnesium alloy [J]. Acta Metall. Sin., 2007, 43: 367
|
24 |
刘志勇, 许庆彦, 柳百成. 铸造镁合金的枝晶生长模拟 [J]. 金属学报, 2007, 43: 367
|
25 |
Beltran-Sanchez L, Stefanescu D M. Growth of solutal dendrites—A cellular automaton model [J]. Int. J. Cast Met. Res., 2003, 15: 251
|
26 |
Wu M W, Xiong S M. Modeling of equiaxed and columnar dendritic growth of magnesium alloy [J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 2212
|
27 |
Wang D K, Hou Y Q, Peng J Y. Partial Differential Equation Method for Image Processing [M]. Beijing: Science Press, 2008: 46
|
27 |
王大凯, 侯榆青, 彭进业. 图像处理的偏微分方程方法 [M]. 北京: 科学出版社, 2008: 46
|
28 |
Beltran-Sanchez L, Stefanescu D M. Growth of solutal dendrites: A cellular automaton model and its quantitative capabilities [J]. Metall. Mater. Trans., 2003, 34A: 367
|
29 |
Chen J. Numerical simulation on solidification microstructures using cellular automaton method [D]. Nanjing: Southeast University, 2005
|
29 |
陈 晋. 基于胞元自动机方法的凝固过程微观组织数值模拟 [D]. 南京: 东南大学, 2005
|
30 |
Zhu M F, Xing L K, Fang H, et al. Progresses in dendrite coarsening during solidification of alloys [J]. Acta Metall. Sin., 2018, 54: 789
doi: 10.11900/0412.1961.2017.00564
|
30 |
朱鸣芳, 邢丽科, 方 辉 等. 合金凝固枝晶粗化的研究进展 [J]. 金属学报, 2018, 54: 789
doi: 10.11900/0412.1961.2017.00564
|
31 |
Wei J J, Wang X D, Yao M. Field variable diffusion cellular automaton model for dendritic growth with multifold symmetry for the solidification of alloys [J]. Modell. Simul. Mater. Sc. Eng., 2021, 29: 075005
|
32 |
Lipton J, Glicksman M E, Kurz W. Dendritic growth into undercooled alloy metals [J]. Mater. Sci. Eng., 1984, 65: 57
|
33 |
Liu L F. A study on prediction of grain size and grain refining of cast Mg-Al alloys [D]. Wuhan: Wuhan University of Science and Technology, 2017
|
33 |
刘龙飞. 铸造Mg-Al合金晶粒尺寸的预测及细化处理研究 [D]. 武汉: 武汉科技大学, 2017
|
34 |
Luo S, Zhu M Y. A two-dimensional model for the quantitative simulation of the dendritic growth with cellular automaton method [J]. Comput. Mater. Sci., 2013, 71: 10
|
35 |
Fu Z N, Xu Q Y, Xiong S M. Microstructure simulation of magnesium alloy [J]. Mater. Sci. Forum, 2007, 546-549: 133
|
36 |
Miao J M, Jing T, Liu B C. Numerical simulation of dendritic morphology of magnesium alloys using phase field method [J]. Acta Metall. Sin., 2008, 44: 483
|
36 |
缪家明, 荆 涛, 柳百成. 镁合金枝晶形貌的相场方法模拟 [J]. 金属学报, 2008, 44: 483
|
37 |
Yao J P, Li X G, Long W Y, et al. Numerical simulation of multiple grains with different preferred growth orientation of magnesium alloys using phase-field method [J]. Chin. J. Nonferrous Met., 2014, 24: 302
|
37 |
尧军平, 李翔光, 龙文元 等. 镁合金不同取向多枝晶生长相场法模拟 [J]. 中国有色金属学报, 2014, 24: 302
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|